Limits of sequences in the real numbers
Content created by Louis Wasserman.
Created on 2025-10-19.
Last modified on 2025-10-19.
{-# OPTIONS --lossy-unification #-} module real-numbers.limits-sequences-real-numbers where
Imports
open import foundation.dependent-pair-types open import foundation.propositional-truncations open import foundation.universe-levels open import lists.sequences open import metric-spaces.cartesian-products-metric-spaces open import metric-spaces.limits-of-sequences-metric-spaces open import real-numbers.addition-real-numbers open import real-numbers.cauchy-sequences-real-numbers open import real-numbers.dedekind-real-numbers open import real-numbers.isometry-addition-real-numbers open import real-numbers.metric-space-of-real-numbers
Idea
On this page, we describe properties of limits of sequences in the metric space of real numbers.
Definition
is-limit-sequence-ℝ : {l : Level} → sequence (ℝ l) → ℝ l → UU l is-limit-sequence-ℝ {l} = is-limit-sequence-Metric-Space (metric-space-ℝ l)
Properties
If two sequences have a limit, their sum has a limit equal to the sum of the limits
module _ {l1 l2 : Level} {u : sequence (ℝ l1)} {v : sequence (ℝ l2)} {lim-u : ℝ l1} {lim-v : ℝ l2} (Hu : is-limit-sequence-ℝ u lim-u) (Hv : is-limit-sequence-ℝ v lim-v) where abstract is-limit-add-sequence-ℝ : is-limit-sequence-Metric-Space ( metric-space-ℝ (l1 ⊔ l2)) ( binary-map-sequence add-ℝ u v) ( lim-u +ℝ lim-v) is-limit-add-sequence-ℝ = modulated-ucont-map-limit-sequence-Metric-Space ( product-Metric-Space (metric-space-ℝ l1) (metric-space-ℝ l2)) ( metric-space-ℝ (l1 ⊔ l2)) ( modulated-ucont-add-pair-ℝ l1 l2) ( pair-sequence u v) ( lim-u , lim-v) ( is-limit-pair-sequence-Metric-Space ( metric-space-ℝ l1) ( metric-space-ℝ l2) ( Hu) ( Hv))
Recent changes
- 2025-10-19. Louis Wasserman. Adding limits and Cauchy sequences in the real numbers (#1603).