Limits of sequences in the real numbers
Content created by Louis Wasserman.
Created on 2025-10-19.
Last modified on 2025-11-21.
{-# OPTIONS --lossy-unification #-} module real-numbers.limits-sequences-real-numbers where
Imports
open import foundation.dependent-pair-types open import foundation.identity-types open import foundation.propositional-truncations open import foundation.propositions open import foundation.universe-levels open import lists.sequences open import metric-spaces.cartesian-products-metric-spaces open import metric-spaces.limits-of-sequences-metric-spaces open import real-numbers.addition-real-numbers open import real-numbers.dedekind-real-numbers open import real-numbers.isometry-addition-real-numbers open import real-numbers.metric-space-of-real-numbers open import real-numbers.uniformly-continuous-functions-real-numbers
Idea
On this page, we describe properties of limits of sequences in the metric space of real numbers.
Definition
is-limit-prop-sequence-ℝ : {l : Level} → sequence (ℝ l) → ℝ l → Prop l is-limit-prop-sequence-ℝ {l} = is-limit-prop-sequence-Metric-Space (metric-space-ℝ l) is-limit-sequence-ℝ : {l : Level} → sequence (ℝ l) → ℝ l → UU l is-limit-sequence-ℝ {l} = is-limit-sequence-Metric-Space (metric-space-ℝ l)
Properties
Any two limits of a sequence of real numbers are equal
module _ {l : Level} (σ : sequence (ℝ l)) where abstract eq-is-limit-sequence-ℝ : (a b : ℝ l) → is-limit-sequence-ℝ σ a → is-limit-sequence-ℝ σ b → a = b eq-is-limit-sequence-ℝ = eq-limit-sequence-Metric-Space ( metric-space-ℝ l) ( σ)
If two sequences have a limit, their sum has a limit equal to the sum of the limits
module _ {l1 l2 : Level} {u : sequence (ℝ l1)} {v : sequence (ℝ l2)} {lim-u : ℝ l1} {lim-v : ℝ l2} (Hu : is-limit-sequence-ℝ u lim-u) (Hv : is-limit-sequence-ℝ v lim-v) where abstract preserves-limits-add-sequence-ℝ : is-limit-sequence-Metric-Space ( metric-space-ℝ (l1 ⊔ l2)) ( binary-map-sequence add-ℝ u v) ( lim-u +ℝ lim-v) preserves-limits-add-sequence-ℝ = preserves-limits-sequence-modulated-ucont-map-Metric-Space ( product-Metric-Space (metric-space-ℝ l1) (metric-space-ℝ l2)) ( metric-space-ℝ (l1 ⊔ l2)) ( modulated-ucont-add-pair-ℝ l1 l2) ( pair-sequence u v) ( lim-u , lim-v) ( is-limit-pair-sequence-Metric-Space ( metric-space-ℝ l1) ( metric-space-ℝ l2) ( Hu) ( Hv))
Uniformly continuous functions from ℝ to ℝ preserve limits
module _ {l1 l2 : Level} (f : uniformly-continuous-function-ℝ l1 l2) (u : sequence (ℝ l1)) (lim : ℝ l1) where abstract preserves-limits-sequence-uniformly-continuous-function-ℝ : is-limit-sequence-ℝ u lim → is-limit-sequence-ℝ ( map-sequence ( map-uniformly-continuous-function-ℝ f) ( u)) ( map-uniformly-continuous-function-ℝ f lim) preserves-limits-sequence-uniformly-continuous-function-ℝ = preserves-limits-sequence-uniformly-continuous-function-Metric-Space ( metric-space-ℝ l1) ( metric-space-ℝ l2) ( f) ( u) ( lim)
Recent changes
- 2025-11-21. Louis Wasserman. Derivatives of real functions defined on proper closed intervals (#1680).
- 2025-11-10. Louis Wasserman. The sum of geometric series in the real numbers (#1676).
- 2025-11-09. Louis Wasserman. Cleanups in real numbers (#1675).
- 2025-10-19. Louis Wasserman. Adding limits and Cauchy sequences in the real numbers (#1603).