Limits of sequences in the real numbers
Content created by Louis Wasserman and Fredrik Bakke.
Created on 2025-10-19.
Last modified on 2026-01-01.
{-# OPTIONS --lossy-unification #-} module real-numbers.limits-sequences-real-numbers where
Imports
open import elementary-number-theory.inequality-natural-numbers open import elementary-number-theory.natural-numbers open import foundation.dependent-pair-types open import foundation.empty-types open import foundation.existential-quantification open import foundation.identity-types open import foundation.propositional-truncations open import foundation.propositions open import foundation.universe-levels open import lists.sequences open import lists.subsequences open import metric-spaces.cartesian-products-metric-spaces open import metric-spaces.limits-of-sequences-metric-spaces open import real-numbers.addition-real-numbers open import real-numbers.dedekind-real-numbers open import real-numbers.difference-real-numbers open import real-numbers.inequalities-addition-and-subtraction-real-numbers open import real-numbers.inequality-real-numbers open import real-numbers.isometry-addition-real-numbers open import real-numbers.metric-space-of-real-numbers open import real-numbers.rational-real-numbers open import real-numbers.strict-inequalities-addition-and-subtraction-real-numbers open import real-numbers.strict-inequality-real-numbers open import real-numbers.uniformly-continuous-endomaps-real-numbers
Idea
On this page, we describe properties of limits of sequences in the metric space of real numbers.
Definition
is-limit-prop-sequence-ℝ : {l : Level} → sequence (ℝ l) → ℝ l → Prop l is-limit-prop-sequence-ℝ {l} = is-limit-prop-sequence-Metric-Space (metric-space-ℝ l) is-limit-sequence-ℝ : {l : Level} → sequence (ℝ l) → ℝ l → UU l is-limit-sequence-ℝ {l} = is-limit-sequence-Metric-Space (metric-space-ℝ l) has-limit-prop-sequence-ℝ : {l : Level} → sequence (ℝ l) → Prop (lsuc l) has-limit-prop-sequence-ℝ {l} = has-limit-prop-sequence-Metric-Space (metric-space-ℝ l) has-limit-sequence-ℝ : {l : Level} → sequence (ℝ l) → UU (lsuc l) has-limit-sequence-ℝ u = type-Prop (has-limit-prop-sequence-ℝ u)
Properties
Any two limits of a sequence of real numbers are equal
module _ {l : Level} (σ : sequence (ℝ l)) where abstract eq-is-limit-sequence-ℝ : (a b : ℝ l) → is-limit-sequence-ℝ σ a → is-limit-sequence-ℝ σ b → a = b eq-is-limit-sequence-ℝ = eq-limit-sequence-Metric-Space ( metric-space-ℝ l) ( σ)
If two sequences have a limit, their sum has a limit equal to the sum of the limits
module _ {l1 l2 : Level} {u : sequence (ℝ l1)} {v : sequence (ℝ l2)} {lim-u : ℝ l1} {lim-v : ℝ l2} (Hu : is-limit-sequence-ℝ u lim-u) (Hv : is-limit-sequence-ℝ v lim-v) where abstract preserves-limits-add-sequence-ℝ : is-limit-sequence-Metric-Space ( metric-space-ℝ (l1 ⊔ l2)) ( binary-map-sequence add-ℝ u v) ( lim-u +ℝ lim-v) preserves-limits-add-sequence-ℝ = preserves-limits-sequence-modulated-ucont-map-Metric-Space ( product-Metric-Space (metric-space-ℝ l1) (metric-space-ℝ l2)) ( metric-space-ℝ (l1 ⊔ l2)) ( modulated-ucont-map-add-pair-ℝ l1 l2) ( pair-sequence u v) ( lim-u , lim-v) ( is-limit-pair-sequence-Metric-Space ( metric-space-ℝ l1) ( metric-space-ℝ l2) ( Hu) ( Hv))
Uniformly continuous functions from ℝ to ℝ preserve limits
module _ {l1 l2 : Level} (f : uniformly-continuous-endomap-ℝ l1 l2) (u : sequence (ℝ l1)) (lim : ℝ l1) where abstract preserves-limits-sequence-uniformly-continuous-endomap-ℝ : is-limit-sequence-ℝ u lim → is-limit-sequence-ℝ ( map-sequence ( map-uniformly-continuous-endomap-ℝ f) ( u)) ( map-uniformly-continuous-endomap-ℝ f lim) preserves-limits-sequence-uniformly-continuous-endomap-ℝ = preserves-limits-sequence-uniformly-continuous-map-Metric-Space ( metric-space-ℝ l1) ( metric-space-ℝ l2) ( f) ( u) ( lim)
A lower bound on a sequence is a lower bound on its limit
module _ {l1 l2 : Level} (b : ℝ l1) {u : sequence (ℝ l2)} {lim-u : ℝ l2} where abstract lower-bound-lim-lower-bound-sequence-ℝ : ((n : ℕ) → leq-ℝ b (u n)) → is-limit-sequence-ℝ u lim-u → leq-ℝ b lim-u lower-bound-lim-lower-bound-sequence-ℝ H = elim-exists ( leq-prop-ℝ b lim-u) ( λ μ is-mod-μ → leq-not-le-ℝ ( lim-u) ( b) ( λ lim-u<b → let open do-syntax-trunc-Prop empty-Prop in do (ε , lim-u+ε<b) ← exists-positive-rational-separation-le-ℝ lim-u<b not-leq-le-ℝ ( u (μ ε)) ( b) ( concatenate-leq-le-ℝ ( u (μ ε)) ( lim-u +ℝ real-ℚ⁺ ε) ( b) ( left-leq-real-bound-neighborhood-ℝ ( ε) ( u (μ ε)) ( lim-u) ( is-mod-μ ( ε) ( μ ε) ( refl-leq-ℕ (μ ε)))) ( lim-u+ε<b)) ( H (μ ε))))
An upper bound on a sequence is an upper bound on its limit
module _ {l1 l2 : Level} (b : ℝ l1) {u : sequence (ℝ l2)} {lim-u : ℝ l2} where abstract upper-bound-lim-upper-bound-sequence-ℝ : ((n : ℕ) → leq-ℝ (u n) b) → is-limit-sequence-ℝ u lim-u → leq-ℝ lim-u b upper-bound-lim-upper-bound-sequence-ℝ H = elim-exists ( leq-prop-ℝ lim-u b) ( λ μ is-mod-μ → leq-not-le-ℝ ( b) ( lim-u) ( λ b<lim-u → let open do-syntax-trunc-Prop empty-Prop in do (ε , b+ε<lim-u) ← exists-positive-rational-separation-le-ℝ b<lim-u not-leq-le-ℝ ( b) ( u (μ ε)) ( concatenate-le-leq-ℝ ( b) ( lim-u -ℝ real-ℚ⁺ ε) ( u (μ ε)) ( le-transpose-left-add-ℝ _ _ _ b+ε<lim-u) ( leq-transpose-right-add-ℝ _ _ _ ( right-leq-real-bound-neighborhood-ℝ ( ε) ( u (μ ε)) ( lim-u) ( is-mod-μ ( ε) ( μ ε) ( refl-leq-ℕ (μ ε)))))) ( H (μ ε))))
Taking subsequences preserves limits
module _ {l : Level} {u : sequence (ℝ l)} {lim-u : ℝ l} (v : subsequence u) where abstract preserves-is-limit-subsequence-ℝ : is-limit-sequence-ℝ u lim-u → is-limit-sequence-ℝ (seq-subsequence u v) lim-u preserves-is-limit-subsequence-ℝ = preserves-is-limit-subsequence-Metric-Space ( metric-space-ℝ l) ( v)
Recent changes
- 2026-01-01. Louis Wasserman and Fredrik Bakke. Use map terminology consistently in metric spaces (#1778).
- 2025-12-30. Louis Wasserman. Properties of limits of sequences in the real numbers (#1767).
- 2025-12-25. Louis Wasserman. The absolute convergence test in real Banach spaces (#1714).
- 2025-11-21. Louis Wasserman. Derivatives of real functions defined on proper closed intervals (#1680).
- 2025-11-10. Louis Wasserman. The sum of geometric series in the real numbers (#1676).