Limits of sequences in the real numbers

Content created by Louis Wasserman.

Created on 2025-10-19.
Last modified on 2025-11-21.

{-# OPTIONS --lossy-unification #-}

module real-numbers.limits-sequences-real-numbers where
Imports
open import foundation.dependent-pair-types
open import foundation.identity-types
open import foundation.propositional-truncations
open import foundation.propositions
open import foundation.universe-levels

open import lists.sequences

open import metric-spaces.cartesian-products-metric-spaces
open import metric-spaces.limits-of-sequences-metric-spaces

open import real-numbers.addition-real-numbers
open import real-numbers.dedekind-real-numbers
open import real-numbers.isometry-addition-real-numbers
open import real-numbers.metric-space-of-real-numbers
open import real-numbers.uniformly-continuous-functions-real-numbers

Idea

On this page, we describe properties of limits of sequences in the metric space of real numbers.

Definition

is-limit-prop-sequence-ℝ : {l : Level}  sequence ( l)   l  Prop l
is-limit-prop-sequence-ℝ {l} =
  is-limit-prop-sequence-Metric-Space (metric-space-ℝ l)

is-limit-sequence-ℝ : {l : Level}  sequence ( l)   l  UU l
is-limit-sequence-ℝ {l} = is-limit-sequence-Metric-Space (metric-space-ℝ l)

Properties

Any two limits of a sequence of real numbers are equal

module _
  {l : Level}
  (σ : sequence ( l))
  where

  abstract
    eq-is-limit-sequence-ℝ :
      (a b :  l)  is-limit-sequence-ℝ σ a  is-limit-sequence-ℝ σ b  a  b
    eq-is-limit-sequence-ℝ =
      eq-limit-sequence-Metric-Space
        ( metric-space-ℝ l)
        ( σ)

If two sequences have a limit, their sum has a limit equal to the sum of the limits

module _
  {l1 l2 : Level}
  {u : sequence ( l1)}
  {v : sequence ( l2)}
  {lim-u :  l1}
  {lim-v :  l2}
  (Hu : is-limit-sequence-ℝ u lim-u)
  (Hv : is-limit-sequence-ℝ v lim-v)
  where

  abstract
    preserves-limits-add-sequence-ℝ :
      is-limit-sequence-Metric-Space
        ( metric-space-ℝ (l1  l2))
        ( binary-map-sequence add-ℝ u v)
        ( lim-u +ℝ lim-v)
    preserves-limits-add-sequence-ℝ =
      preserves-limits-sequence-modulated-ucont-map-Metric-Space
        ( product-Metric-Space (metric-space-ℝ l1) (metric-space-ℝ l2))
        ( metric-space-ℝ (l1  l2))
        ( modulated-ucont-add-pair-ℝ l1 l2)
        ( pair-sequence u v)
        ( lim-u , lim-v)
        ( is-limit-pair-sequence-Metric-Space
          ( metric-space-ℝ l1)
          ( metric-space-ℝ l2)
          ( Hu)
          ( Hv))

Uniformly continuous functions from to preserve limits

module _
  {l1 l2 : Level}
  (f : uniformly-continuous-function-ℝ l1 l2)
  (u : sequence ( l1))
  (lim :  l1)
  where

  abstract
    preserves-limits-sequence-uniformly-continuous-function-ℝ :
      is-limit-sequence-ℝ u lim 
      is-limit-sequence-ℝ
        ( map-sequence
          ( map-uniformly-continuous-function-ℝ f)
          ( u))
        ( map-uniformly-continuous-function-ℝ f lim)
    preserves-limits-sequence-uniformly-continuous-function-ℝ =
      preserves-limits-sequence-uniformly-continuous-function-Metric-Space
        ( metric-space-ℝ l1)
        ( metric-space-ℝ l2)
        ( f)
        ( u)
        ( lim)

Recent changes