Continuous maps between metric spaces
Content created by Fredrik Bakke and Louis Wasserman.
Created on 2026-01-01.
Last modified on 2026-01-01.
module metric-spaces.continuous-maps-metric-spaces where
Imports
open import elementary-number-theory.positive-rational-numbers open import foundation.dependent-pair-types open import foundation.existential-quantification open import foundation.inhabited-subtypes open import foundation.propositional-truncations open import foundation.propositions open import foundation.subtypes open import foundation.universe-levels open import metric-spaces.limits-of-maps-metric-spaces open import metric-spaces.maps-metric-spaces open import metric-spaces.metric-spaces
Idea
A map f between
metric spaces X and Y is
continuous¶
at a point x if f x is the
limit of f at x. I.e.,
there exists a function
m : ℚ⁺ → ℚ⁺ such that whenever x' is in an m ε-neighborhood of x, f x'
is in an ε-neighborhood of f x. In this case, m is called a
modulus of continuity¶
of f at x.
Definitions
module _ {l1 l2 l3 l4 : Level} (X : Metric-Space l1 l2) (Y : Metric-Space l3 l4) (f : map-Metric-Space X Y) (x : type-Metric-Space X) where is-continuous-at-point-prop-map-Metric-Space : Prop (l1 ⊔ l2 ⊔ l4) is-continuous-at-point-prop-map-Metric-Space = is-point-limit-prop-map-Metric-Space X Y f x (f x) is-continuous-at-point-map-Metric-Space : UU (l1 ⊔ l2 ⊔ l4) is-continuous-at-point-map-Metric-Space = is-point-limit-map-Metric-Space X Y f x (f x) is-modulus-of-continuity-at-point-prop-map-Metric-Space : (ℚ⁺ → ℚ⁺) → Prop (l1 ⊔ l2 ⊔ l4) is-modulus-of-continuity-at-point-prop-map-Metric-Space = is-modulus-of-point-limit-prop-map-Metric-Space X Y f x (f x) is-modulus-of-continuity-at-point-map-Metric-Space : (ℚ⁺ → ℚ⁺) → UU (l1 ⊔ l2 ⊔ l4) is-modulus-of-continuity-at-point-map-Metric-Space = is-modulus-of-point-limit-map-Metric-Space X Y f x (f x) modulus-of-continuity-at-point-map-Metric-Space : UU (l1 ⊔ l2 ⊔ l4) modulus-of-continuity-at-point-map-Metric-Space = type-subtype is-modulus-of-continuity-at-point-prop-map-Metric-Space module _ {l1 l2 l3 l4 : Level} (X : Metric-Space l1 l2) (Y : Metric-Space l3 l4) (f : map-Metric-Space X Y) where is-pointwise-continuous-prop-map-Metric-Space : Prop (l1 ⊔ l2 ⊔ l4) is-pointwise-continuous-prop-map-Metric-Space = Π-Prop ( type-Metric-Space X) ( is-continuous-at-point-prop-map-Metric-Space X Y f) is-pointwise-continuous-map-Metric-Space : UU (l1 ⊔ l2 ⊔ l4) is-pointwise-continuous-map-Metric-Space = type-Prop is-pointwise-continuous-prop-map-Metric-Space
External links
- Continuous function at Wikidata
Recent changes
- 2026-01-01. Louis Wasserman and Fredrik Bakke. Use map terminology consistently in metric spaces (#1778).