Cardinalities of sets
Content created by Egbert Rijke, Fredrik Bakke, Jonathan Prieto-Cubides, Elif Uskuplu, Julian KG, Victor Blanchi, fernabnor and louismntnu.
Created on 2022-05-25.
Last modified on 2024-09-23.
module set-theory.cardinalities where
Imports
open import foundation.binary-relations open import foundation.dependent-pair-types open import foundation.equivalences open import foundation.function-extensionality open import foundation.functoriality-propositional-truncation open import foundation.identity-types open import foundation.large-binary-relations open import foundation.law-of-excluded-middle open import foundation.mere-embeddings open import foundation.mere-equivalences open import foundation.propositional-extensionality open import foundation.propositions open import foundation.set-truncations open import foundation.sets open import foundation.universe-levels
Idea
The cardinality¶ of a set is its isomorphism class. We take isomorphism classes of sets by set truncating the universe of sets of any given universe level. Note that this definition takes advantage of the univalence axiom: By the univalence axiom isomorphic sets are equal, and will be mapped to the same element in the set truncation of the universe of all sets.
Definition
Cardinalities
cardinal-Set : (l : Level) → Set (lsuc l) cardinal-Set l = trunc-Set (Set l) cardinal : (l : Level) → UU (lsuc l) cardinal l = type-Set (cardinal-Set l) cardinality : {l : Level} → Set l → cardinal l cardinality A = unit-trunc-Set A
Inequality of cardinalities
leq-cardinality-Prop' : {l1 l2 : Level} → Set l1 → cardinal l2 → Prop (l1 ⊔ l2) leq-cardinality-Prop' {l1} {l2} X = map-universal-property-trunc-Set ( Prop-Set (l1 ⊔ l2)) ( λ Y' → mere-emb-Prop (type-Set X) (type-Set Y')) compute-leq-cardinality-Prop' : {l1 l2 : Level} (X : Set l1) (Y : Set l2) → ( leq-cardinality-Prop' X (cardinality Y)) = ( mere-emb-Prop (type-Set X) (type-Set Y)) compute-leq-cardinality-Prop' {l1} {l2} X = triangle-universal-property-trunc-Set ( Prop-Set (l1 ⊔ l2)) ( λ Y' → mere-emb-Prop (type-Set X) (type-Set Y')) leq-cardinality-Prop : {l1 l2 : Level} → cardinal l1 → cardinal l2 → Prop (l1 ⊔ l2) leq-cardinality-Prop {l1} {l2} = map-universal-property-trunc-Set ( hom-set-Set (cardinal-Set l2) (Prop-Set (l1 ⊔ l2))) ( leq-cardinality-Prop') leq-cardinality : {l1 l2 : Level} → cardinal l1 → cardinal l2 → UU (l1 ⊔ l2) leq-cardinality X Y = type-Prop (leq-cardinality-Prop X Y) is-prop-leq-cardinality : {l1 l2 : Level} {X : cardinal l1} {Y : cardinal l2} → is-prop (leq-cardinality X Y) is-prop-leq-cardinality {X = X} {Y = Y} = is-prop-type-Prop (leq-cardinality-Prop X Y) compute-leq-cardinality : {l1 l2 : Level} (X : Set l1) (Y : Set l2) → ( leq-cardinality (cardinality X) (cardinality Y)) ≃ ( mere-emb (type-Set X) (type-Set Y)) compute-leq-cardinality {l1} {l2} X Y = equiv-eq-Prop ( ( htpy-eq ( triangle-universal-property-trunc-Set ( hom-set-Set (cardinal-Set l2) (Prop-Set (l1 ⊔ l2))) ( leq-cardinality-Prop') X) (cardinality Y)) ∙ ( compute-leq-cardinality-Prop' X Y)) unit-leq-cardinality : {l1 l2 : Level} (X : Set l1) (Y : Set l2) → mere-emb (type-Set X) (type-Set Y) → leq-cardinality (cardinality X) (cardinality Y) unit-leq-cardinality X Y = map-inv-equiv (compute-leq-cardinality X Y) inv-unit-leq-cardinality : {l1 l2 : Level} (X : Set l1) (Y : Set l2) → leq-cardinality (cardinality X) (cardinality Y) → mere-emb (type-Set X) (type-Set Y) inv-unit-leq-cardinality X Y = pr1 (compute-leq-cardinality X Y) refl-leq-cardinality : is-reflexive-Large-Relation cardinal leq-cardinality refl-leq-cardinality {l} = apply-dependent-universal-property-trunc-Set' ( λ X → set-Prop (leq-cardinality-Prop X X)) ( λ A → unit-leq-cardinality A A (refl-mere-emb (type-Set A))) transitive-leq-cardinality : {l1 l2 l3 : Level} (X : cardinal l1) (Y : cardinal l2) (Z : cardinal l3) → leq-cardinality X Y → leq-cardinality Y Z → leq-cardinality X Z transitive-leq-cardinality X Y Z = apply-dependent-universal-property-trunc-Set' ( λ u → set-Prop ( function-Prop ( leq-cardinality u Y) ( function-Prop (leq-cardinality Y Z) ( leq-cardinality-Prop u Z)))) ( λ a → apply-dependent-universal-property-trunc-Set' ( λ v → set-Prop (function-Prop (leq-cardinality (cardinality a) v) (function-Prop (leq-cardinality v Z) (leq-cardinality-Prop (cardinality a) Z)))) ( λ b → apply-dependent-universal-property-trunc-Set' ( λ w → set-Prop (function-Prop (leq-cardinality (cardinality a) (cardinality b)) (function-Prop (leq-cardinality (cardinality b) w) (leq-cardinality-Prop (cardinality a) w)))) ( λ c a<b b<c → unit-leq-cardinality ( a) ( c) ( transitive-mere-emb ( inv-unit-leq-cardinality b c b<c) ( inv-unit-leq-cardinality a b a<b))) ( Z)) ( Y)) ( X)
Properties
For sets, the type # X = # Y
is equivalent to the type of mere equivalences from X
to Y
is-effective-cardinality : {l : Level} (X Y : Set l) → (cardinality X = cardinality Y) ≃ mere-equiv (type-Set X) (type-Set Y) is-effective-cardinality X Y = ( equiv-trunc-Prop (extensionality-Set X Y)) ∘e ( is-effective-unit-trunc-Set (Set _) X Y)
Assuming excluded middle we can show that leq-cardinality
is a partial order
Using the previous result and assuming excluded middle, we can conclude
leq-cardinality
is a partial order by showing that it is antisymmetric.
antisymmetric-leq-cardinality : {l1 : Level} (X Y : cardinal l1) → (LEM l1) → leq-cardinality X Y → leq-cardinality Y X → X = Y antisymmetric-leq-cardinality {l1} X Y lem = apply-dependent-universal-property-trunc-Set' ( λ u → set-Prop ( function-Prop ( leq-cardinality u Y) ( function-Prop ( leq-cardinality Y u) ( Id-Prop (cardinal-Set l1) u Y)))) ( λ a → apply-dependent-universal-property-trunc-Set' ( λ v → set-Prop ( function-Prop ( leq-cardinality (cardinality a) v) ( function-Prop ( leq-cardinality v (cardinality a)) ( Id-Prop (cardinal-Set l1) (cardinality a) v)))) ( λ b a<b b<a → map-inv-equiv (is-effective-cardinality a b) (antisymmetric-mere-emb lem (inv-unit-leq-cardinality _ _ a<b) (inv-unit-leq-cardinality _ _ b<a))) ( Y)) ( X)
External links
- Cardinality at Mathswitch
- Cardinality at Wikipedia
- cardinal number at Lab
Recent changes
- 2024-09-23. Fredrik Bakke. Cantor’s theorem and diagonal argument (#1185).
- 2023-11-24. Fredrik Bakke. Modal type theory (#701).
- 2023-11-24. Egbert Rijke. Abelianization (#877).
- 2023-10-16. Fredrik Bakke and Egbert Rijke. The decidable total order on a standard finite type (#844).
- 2023-09-10. Fredrik Bakke. Define precedence levels and associativities for all binary operators (#712).