Locally constant functions in metric spaces
Content created by Louis Wasserman and malarbol.
Created on 2025-08-18.
Last modified on 2025-08-18.
module metric-spaces.locally-constant-functions-metric-spaces where
Imports
open import elementary-number-theory.positive-rational-numbers open import foundation.action-on-identifications-functions open import foundation.dependent-pair-types open import foundation.equivalence-relations open import foundation.existential-quantification open import foundation.function-types open import foundation.functoriality-propositional-truncation open import foundation.propositional-truncations open import foundation.propositions open import foundation.sets open import foundation.subtypes open import foundation.universe-levels open import metric-spaces.elements-at-bounded-distance-metric-spaces open import metric-spaces.functions-metric-spaces open import metric-spaces.metric-spaces open import metric-spaces.short-functions-metric-spaces
Idea
A function between metric spaces is locally constant¶ if elements at bounded distance have identical images. All locally constant functions are short.
Definitions
The property of being a locally constant function
module _ {l1 l2 l1' l2' : Level} (A : Metric-Space l1 l2) (B : Metric-Space l1' l2') (f : type-function-Metric-Space A B) where is-locally-constant-prop-function-Metric-Space : Prop (l1 ⊔ l2 ⊔ l1') is-locally-constant-prop-function-Metric-Space = Π-Prop ( type-Metric-Space A) ( λ x → Π-Prop ( type-Metric-Space A) ( λ y → bounded-dist-prop-Metric-Space A x y ⇒ Id-Prop ( set-Metric-Space B) ( f x) ( f y))) is-locally-constant-function-Metric-Space : UU (l1 ⊔ l2 ⊔ l1') is-locally-constant-function-Metric-Space = type-Prop is-locally-constant-prop-function-Metric-Space is-prop-is-locally-constant-function-Metric-Space : is-prop is-locally-constant-function-Metric-Space is-prop-is-locally-constant-function-Metric-Space = is-prop-type-Prop is-locally-constant-prop-function-Metric-Space
Properties
Locally constant functions are short
module _ {l1 l2 l1' l2' : Level} (A : Metric-Space l1 l2) (B : Metric-Space l1' l2') (f : type-function-Metric-Space A B) where is-short-is-locally-constant-function-Metric-Space : is-locally-constant-function-Metric-Space A B f → is-short-function-Metric-Space A B f is-short-is-locally-constant-function-Metric-Space H d x y Nxy = sim-eq-Metric-Space ( B) ( f x) ( f y) ( H x y (intro-exists d Nxy)) ( d)
Recent changes
- 2025-08-18. malarbol and Louis Wasserman. Refactor metric spaces (#1450).