Locally constant functions in metric spaces

Content created by Louis Wasserman and malarbol.

Created on 2025-08-18.
Last modified on 2025-08-18.

module metric-spaces.locally-constant-functions-metric-spaces where
Imports
open import elementary-number-theory.positive-rational-numbers

open import foundation.action-on-identifications-functions
open import foundation.dependent-pair-types
open import foundation.equivalence-relations
open import foundation.existential-quantification
open import foundation.function-types
open import foundation.functoriality-propositional-truncation
open import foundation.propositional-truncations
open import foundation.propositions
open import foundation.sets
open import foundation.subtypes
open import foundation.universe-levels

open import metric-spaces.elements-at-bounded-distance-metric-spaces
open import metric-spaces.functions-metric-spaces
open import metric-spaces.metric-spaces
open import metric-spaces.short-functions-metric-spaces

Idea

A function between metric spaces is locally constant if elements at bounded distance have identical images. All locally constant functions are short.

Definitions

The property of being a locally constant function

module _
  {l1 l2 l1' l2' : Level} (A : Metric-Space l1 l2) (B : Metric-Space l1' l2')
  (f : type-function-Metric-Space A B)
  where

  is-locally-constant-prop-function-Metric-Space : Prop (l1  l2  l1')
  is-locally-constant-prop-function-Metric-Space =
    Π-Prop
      ( type-Metric-Space A)
      ( λ x 
        Π-Prop
          ( type-Metric-Space A)
          ( λ y 
            bounded-dist-prop-Metric-Space A x y 
            Id-Prop
              ( set-Metric-Space B)
              ( f x)
              ( f y)))

  is-locally-constant-function-Metric-Space : UU (l1  l2  l1')
  is-locally-constant-function-Metric-Space =
    type-Prop is-locally-constant-prop-function-Metric-Space

  is-prop-is-locally-constant-function-Metric-Space :
    is-prop is-locally-constant-function-Metric-Space
  is-prop-is-locally-constant-function-Metric-Space =
    is-prop-type-Prop is-locally-constant-prop-function-Metric-Space

Properties

Locally constant functions are short

module _
  {l1 l2 l1' l2' : Level} (A : Metric-Space l1 l2) (B : Metric-Space l1' l2')
  (f : type-function-Metric-Space A B)
  where

  is-short-is-locally-constant-function-Metric-Space :
    is-locally-constant-function-Metric-Space A B f 
    is-short-function-Metric-Space A B f
  is-short-is-locally-constant-function-Metric-Space H d x y Nxy =
    sim-eq-Metric-Space
      ( B)
      ( f x)
      ( f y)
      ( H x y (intro-exists d Nxy))
      ( d)

Recent changes