Short functions between metric spaces

Content created by Fredrik Bakke and malarbol.

Created on 2024-09-28.
Last modified on 2024-09-28.

module metric-spaces.short-functions-metric-spaces where
Imports
open import elementary-number-theory.positive-rational-numbers

open import foundation.dependent-pair-types
open import foundation.embeddings
open import foundation.equivalences
open import foundation.function-extensionality
open import foundation.function-types
open import foundation.homotopies
open import foundation.identity-types
open import foundation.propositional-truncations
open import foundation.propositions
open import foundation.sequences
open import foundation.sets
open import foundation.subtypes
open import foundation.universe-levels

open import metric-spaces.functions-metric-spaces
open import metric-spaces.isometries-metric-spaces
open import metric-spaces.metric-spaces
open import metric-spaces.short-functions-premetric-spaces

Idea

A function f between two metric spaces A and B is short if it is short on their carrier premetric spaces: for any points x and y that are d-neighbors in A, f x and f y are d-neighbors in B. I.e., upper bounds of the distance between two points in A are upper bounds of the distances of their images.

Definitions

The property of being a short function between metric spaces

module _
  {l1 l2 l1' l2' : Level}
  (A : Metric-Space l1 l2) (B : Metric-Space l1' l2')
  (f : map-type-Metric-Space A B)
  where

  is-short-function-prop-Metric-Space : Prop (l1  l2  l2')
  is-short-function-prop-Metric-Space =
    is-short-function-prop-Premetric-Space
      ( premetric-Metric-Space A)
      ( premetric-Metric-Space B)
      ( f)

  is-short-function-Metric-Space : UU (l1  l2  l2')
  is-short-function-Metric-Space =
    type-Prop is-short-function-prop-Metric-Space

  is-prop-is-short-function-Metric-Space :
    is-prop is-short-function-Metric-Space
  is-prop-is-short-function-Metric-Space =
    is-prop-type-Prop is-short-function-prop-Metric-Space

The set of short functions between metric spaces

module _
  {l1 l2 l1' l2' : Level}
  (A : Metric-Space l1 l2) (B : Metric-Space l1' l2')
  where

  set-short-function-Metric-Space : Set (l1  l2  l1'  l2')
  set-short-function-Metric-Space =
    set-subset
      ( set-map-type-Metric-Space A B)
      ( is-short-function-prop-Metric-Space A B)

  short-function-Metric-Space : UU (l1  l2  l1'  l2')
  short-function-Metric-Space = type-Set set-short-function-Metric-Space

  is-set-short-function-Metric-Space : is-set short-function-Metric-Space
  is-set-short-function-Metric-Space =
    is-set-type-Set set-short-function-Metric-Space

module _
  {l1 l2 l1' l2' : Level}
  (A : Metric-Space l1 l2) (B : Metric-Space l1' l2')
  (f : short-function-Metric-Space A B)
  where

  map-short-function-Metric-Space : map-type-Metric-Space A B
  map-short-function-Metric-Space =
    map-short-function-Premetric-Space
      ( premetric-Metric-Space A)
      ( premetric-Metric-Space B)
      ( f)

  is-short-map-short-function-Metric-Space :
    is-short-function-Metric-Space A B map-short-function-Metric-Space
  is-short-map-short-function-Metric-Space =
    is-short-map-short-function-Premetric-Space
      ( premetric-Metric-Space A)
      ( premetric-Metric-Space B)
      ( f)

Properties

The identity function on a metric space is short

module _
  {l1 l2 : Level} (A : Metric-Space l1 l2)
  where

  is-short-id-Metric-Space :
    is-short-function-Metric-Space A A (id-Metric-Space A)
  is-short-id-Metric-Space d x y H = H

  short-id-Metric-Space : short-function-Metric-Space A A
  short-id-Metric-Space =
    id-Metric-Space A , is-short-id-Metric-Space

Equality of short functions between metric spaces is characterized by homotopy of their carrier maps

module _
  {l1 l2 l1' l2' : Level}
  (A : Metric-Space l1 l2) (B : Metric-Space l1' l2')
  (f g : short-function-Metric-Space A B)
  where

  equiv-eq-htpy-map-short-function-Metric-Space :
    ( f  g) 
    ( map-short-function-Metric-Space A B f ~
      map-short-function-Metric-Space A B g)
  equiv-eq-htpy-map-short-function-Metric-Space =
    equiv-funext ∘e
    extensionality-type-subtype'
      ( is-short-function-prop-Metric-Space A B) f g

  eq-htpy-map-short-function-Metric-Space :
    ( map-short-function-Metric-Space A B f ~
      map-short-function-Metric-Space A B g) 
    ( f  g)
  eq-htpy-map-short-function-Metric-Space =
    map-inv-equiv equiv-eq-htpy-map-short-function-Metric-Space

Composition of short functions

module _
  {l1a l2a l1b l2b l1c l2c : Level}
  (A : Metric-Space l1a l2a)
  (B : Metric-Space l1b l2b)
  (C : Metric-Space l1c l2c)
  where

  comp-short-function-Metric-Space :
    short-function-Metric-Space B C 
    short-function-Metric-Space A B 
    short-function-Metric-Space A C
  comp-short-function-Metric-Space =
    comp-short-function-Premetric-Space
      ( premetric-Metric-Space A)
      ( premetric-Metric-Space B)
      ( premetric-Metric-Space C)

Unit laws for composition of short maps between metric spaces

module _
  {l1a l2a l1b l2b : Level}
  (A : Metric-Space l1a l2a)
  (B : Metric-Space l1b l2b)
  (f : short-function-Metric-Space A B)
  where

  left-unit-law-comp-short-function-Metric-Space :
    ( comp-short-function-Metric-Space A B B
      ( short-id-Metric-Space B)
      ( f)) 
    ( f)
  left-unit-law-comp-short-function-Metric-Space =
    eq-htpy-map-short-function-Metric-Space
      ( A)
      ( B)
      ( comp-short-function-Metric-Space
        ( A)
        ( B)
        ( B)
        ( short-id-Metric-Space B)
        ( f))
      ( f)
      ( λ x  refl)

  right-unit-law-comp-short-function-Metric-Space :
    ( comp-short-function-Metric-Space A A B
      ( f)
      ( short-id-Metric-Space A)) 
    ( f)
  right-unit-law-comp-short-function-Metric-Space =
    eq-htpy-map-short-function-Metric-Space
      ( A)
      ( B)
      ( f)
      ( comp-short-function-Metric-Space
        ( A)
        ( A)
        ( B)
        ( f)
        ( short-id-Metric-Space A))
      ( λ x  refl)

Associatity of composition of short maps between metric spaces

module _
  {l1a l2a l1b l2b l1c l2c l1d l2d : Level}
  (A : Metric-Space l1a l2a)
  (B : Metric-Space l1b l2b)
  (C : Metric-Space l1c l2c)
  (D : Metric-Space l1d l2d)
  (h : short-function-Metric-Space C D)
  (g : short-function-Metric-Space B C)
  (f : short-function-Metric-Space A B)
  where

  associative-comp-short-function-Metric-Space :
    ( comp-short-function-Metric-Space A B D
      ( comp-short-function-Metric-Space B C D h g)
        ( f)) 
    ( comp-short-function-Metric-Space A C D
      ( h)
      ( comp-short-function-Metric-Space A B C g f))
  associative-comp-short-function-Metric-Space =
    eq-htpy-map-short-function-Metric-Space
      ( A)
      ( D)
      ( comp-short-function-Metric-Space A B D
        ( comp-short-function-Metric-Space B C D h g)
        ( f))
      ( comp-short-function-Metric-Space A C D
        ( h)
        ( comp-short-function-Metric-Space A B C g f))
      ( λ x  refl)

Constant functions between metric spaces are short

module _
  {l1 l2 l1' l2' : Level}
  (A : Metric-Space l1 l2) (B : Metric-Space l1' l2')
  (b : type-Metric-Space B)
  where

  is-short-constant-function-Metric-Space :
    is-short-function-Metric-Space A B  _  b)
  is-short-constant-function-Metric-Space ε x y H =
    is-reflexive-structure-Metric-Space B ε b

Any isometry between metric spaces is short

module _
  {l1 l2 l1' l2' : Level}
  (A : Metric-Space l1 l2) (B : Metric-Space l1' l2')
  (f : map-type-Metric-Space A B)
  where

  is-short-is-isometry-Metric-Space :
    is-isometry-Metric-Space A B f 
    is-short-function-Metric-Space A B f
  is-short-is-isometry-Metric-Space =
    is-short-is-isometry-Premetric-Space
      ( premetric-Metric-Space A)
      ( premetric-Metric-Space B)
      ( f)

The embedding of isometries of metric spaces into short maps

module _
  {l1 l2 l1' l2' : Level}
  (A : Metric-Space l1 l2) (B : Metric-Space l1' l2')
  where

  short-isometry-Metric-Space :
    isometry-Metric-Space A B  short-function-Metric-Space A B
  short-isometry-Metric-Space f =
    map-isometry-Metric-Space A B f ,
    is-short-is-isometry-Metric-Space
      ( A)
      ( B)
      ( map-isometry-Metric-Space A B f)
      ( is-isometry-map-isometry-Metric-Space A B f)

  is-emb-short-isometry-Metric-Space : is-emb short-isometry-Metric-Space
  is-emb-short-isometry-Metric-Space =
    is-emb-right-factor
      ( map-short-function-Metric-Space A B)
      ( short-isometry-Metric-Space)
      ( is-emb-inclusion-subtype (is-short-function-prop-Metric-Space A B))
      ( is-emb-htpy
        ( λ f  refl)
        ( is-emb-inclusion-subtype (is-isometry-prop-Metric-Space A B)))

See also

Recent changes