Short functions between metric spaces
Content created by Louis Wasserman, malarbol and Fredrik Bakke.
Created on 2024-09-28.
Last modified on 2025-08-18.
module metric-spaces.short-functions-metric-spaces where
Imports
open import elementary-number-theory.positive-rational-numbers open import foundation.dependent-pair-types open import foundation.embeddings open import foundation.equivalences open import foundation.existential-quantification open import foundation.function-extensionality open import foundation.function-types open import foundation.homotopies open import foundation.identity-types open import foundation.propositional-truncations open import foundation.propositions open import foundation.sequences open import foundation.sets open import foundation.subtypes open import foundation.universe-levels open import metric-spaces.functions-metric-spaces open import metric-spaces.isometries-metric-spaces open import metric-spaces.metric-spaces open import metric-spaces.poset-of-rational-neighborhood-relations open import metric-spaces.preimages-rational-neighborhood-relations open import metric-spaces.short-functions-pseudometric-spaces
Idea
A function f
between two
metric spaces A
and B
is
short¶
if it’s short between
their underlying pseudometric spaces.
That is, if the
rational neighborhood relation
on A
is finer
than the preimage
by f
of the rational neighborhood relation on B
. I.e., upper bounds on the
distance between two points in A
are upper bounds of the distance between
their images in B
.
Definitions
The property of being a short function between metric spaces
module _ {l1 l2 l1' l2' : Level} (A : Metric-Space l1 l2) (B : Metric-Space l1' l2') (f : type-function-Metric-Space A B) where is-short-function-prop-Metric-Space : Prop (l1 ⊔ l2 ⊔ l2') is-short-function-prop-Metric-Space = is-short-function-prop-Pseudometric-Space ( pseudometric-Metric-Space A) ( pseudometric-Metric-Space B) ( f) is-short-function-Metric-Space : UU (l1 ⊔ l2 ⊔ l2') is-short-function-Metric-Space = type-Prop is-short-function-prop-Metric-Space is-prop-is-short-function-Metric-Space : is-prop is-short-function-Metric-Space is-prop-is-short-function-Metric-Space = is-prop-type-Prop is-short-function-prop-Metric-Space
The set of short functions between metric spaces
module _ {l1 l2 l1' l2' : Level} (A : Metric-Space l1 l2) (B : Metric-Space l1' l2') where short-function-Metric-Space : UU (l1 ⊔ l2 ⊔ l1' ⊔ l2') short-function-Metric-Space = short-function-Pseudometric-Space ( pseudometric-Metric-Space A) ( pseudometric-Metric-Space B) set-short-function-Metric-Space : Set (l1 ⊔ l2 ⊔ l1' ⊔ l2') set-short-function-Metric-Space = set-subset ( set-function-Metric-Space A B) ( is-short-function-prop-Metric-Space A B) is-set-short-function-Metric-Space : is-set short-function-Metric-Space is-set-short-function-Metric-Space = is-set-type-Set set-short-function-Metric-Space module _ {l1 l2 l1' l2' : Level} (A : Metric-Space l1 l2) (B : Metric-Space l1' l2') (f : short-function-Metric-Space A B) where map-short-function-Metric-Space : type-function-Metric-Space A B map-short-function-Metric-Space = map-short-function-Pseudometric-Space ( pseudometric-Metric-Space A) ( pseudometric-Metric-Space B) ( f) is-short-map-short-function-Metric-Space : is-short-function-Metric-Space A B map-short-function-Metric-Space is-short-map-short-function-Metric-Space = is-short-map-short-function-Pseudometric-Space ( pseudometric-Metric-Space A) ( pseudometric-Metric-Space B) ( f)
Properties
The identity function on a metric space is short
module _ {l1 l2 : Level} (A : Metric-Space l1 l2) where is-short-id-Metric-Space : is-short-function-Metric-Space A A (id-Metric-Space A) is-short-id-Metric-Space = is-short-id-Pseudometric-Space ( pseudometric-Metric-Space A) short-id-Metric-Space : short-function-Metric-Space A A short-id-Metric-Space = short-id-Pseudometric-Space (pseudometric-Metric-Space A)
Equality of short functions between metric spaces is characterized by homotopy of their carrier maps
module _ {l1 l2 l1' l2' : Level} (A : Metric-Space l1 l2) (B : Metric-Space l1' l2') (f g : short-function-Metric-Space A B) where equiv-eq-htpy-map-short-function-Metric-Space : ( f = g) ≃ ( map-short-function-Metric-Space A B f ~ map-short-function-Metric-Space A B g) equiv-eq-htpy-map-short-function-Metric-Space = equiv-funext ∘e extensionality-type-subtype' ( is-short-function-prop-Metric-Space A B) f g eq-htpy-map-short-function-Metric-Space : ( map-short-function-Metric-Space A B f ~ map-short-function-Metric-Space A B g) → ( f = g) eq-htpy-map-short-function-Metric-Space = map-inv-equiv equiv-eq-htpy-map-short-function-Metric-Space
Composition of short functions
module _ {l1a l2a l1b l2b l1c l2c : Level} (A : Metric-Space l1a l2a) (B : Metric-Space l1b l2b) (C : Metric-Space l1c l2c) where is-short-comp-is-short-function-Metric-Space : (g : type-function-Metric-Space B C) → (f : type-function-Metric-Space A B) → is-short-function-Metric-Space B C g → is-short-function-Metric-Space A B f → is-short-function-Metric-Space A C (g ∘ f) is-short-comp-is-short-function-Metric-Space = is-short-comp-is-short-function-Pseudometric-Space ( pseudometric-Metric-Space A) ( pseudometric-Metric-Space B) ( pseudometric-Metric-Space C) comp-short-function-Metric-Space : short-function-Metric-Space B C → short-function-Metric-Space A B → short-function-Metric-Space A C comp-short-function-Metric-Space = comp-short-function-Pseudometric-Space ( pseudometric-Metric-Space A) ( pseudometric-Metric-Space B) ( pseudometric-Metric-Space C)
Unit laws for composition of short maps between metric spaces
module _ {l1a l2a l1b l2b : Level} (A : Metric-Space l1a l2a) (B : Metric-Space l1b l2b) (f : short-function-Metric-Space A B) where left-unit-law-comp-short-function-Metric-Space : ( comp-short-function-Metric-Space A B B ( short-id-Metric-Space B) ( f)) = ( f) left-unit-law-comp-short-function-Metric-Space = left-unit-law-comp-short-function-Pseudometric-Space ( pseudometric-Metric-Space A) ( pseudometric-Metric-Space B) ( f) right-unit-law-comp-short-function-Metric-Space : ( comp-short-function-Metric-Space A A B ( f) ( short-id-Metric-Space A)) = ( f) right-unit-law-comp-short-function-Metric-Space = right-unit-law-comp-short-function-Pseudometric-Space ( pseudometric-Metric-Space A) ( pseudometric-Metric-Space B) ( f)
Associativity of composition of short maps between metric spaces
module _ {l1a l2a l1b l2b l1c l2c l1d l2d : Level} (A : Metric-Space l1a l2a) (B : Metric-Space l1b l2b) (C : Metric-Space l1c l2c) (D : Metric-Space l1d l2d) (h : short-function-Metric-Space C D) (g : short-function-Metric-Space B C) (f : short-function-Metric-Space A B) where associative-comp-short-function-Metric-Space : ( comp-short-function-Metric-Space A B D ( comp-short-function-Metric-Space B C D h g) ( f)) = ( comp-short-function-Metric-Space A C D ( h) ( comp-short-function-Metric-Space A B C g f)) associative-comp-short-function-Metric-Space = associative-comp-short-function-Pseudometric-Space ( pseudometric-Metric-Space A) ( pseudometric-Metric-Space B) ( pseudometric-Metric-Space C) ( pseudometric-Metric-Space D) ( h) ( g) ( f)
Constant functions between metric spaces are short
module _ {l1 l2 l1' l2' : Level} (A : Metric-Space l1 l2) (B : Metric-Space l1' l2') (b : type-Metric-Space B) where is-short-constant-function-Metric-Space : is-short-function-Metric-Space A B (λ _ → b) is-short-constant-function-Metric-Space = is-short-constant-function-Pseudometric-Space ( pseudometric-Metric-Space A) ( pseudometric-Metric-Space B) ( b) short-constant-function-Metric-Space : short-function-Metric-Space A B short-constant-function-Metric-Space = short-constant-function-Pseudometric-Space ( pseudometric-Metric-Space A) ( pseudometric-Metric-Space B) ( b)
Any isometry between metric spaces is short
module _ {l1 l2 l1' l2' : Level} (A : Metric-Space l1 l2) (B : Metric-Space l1' l2') (f : type-function-Metric-Space A B) where is-short-is-isometry-Metric-Space : is-isometry-Metric-Space A B f → is-short-function-Metric-Space A B f is-short-is-isometry-Metric-Space = is-short-is-isometry-Pseudometric-Space ( pseudometric-Metric-Space A) ( pseudometric-Metric-Space B) ( f)
The embedding of isometries of metric spaces into short maps
module _ {l1 l2 l1' l2' : Level} (A : Metric-Space l1 l2) (B : Metric-Space l1' l2') where short-isometry-Metric-Space : isometry-Metric-Space A B → short-function-Metric-Space A B short-isometry-Metric-Space = short-isometry-Pseudometric-Space ( pseudometric-Metric-Space A) ( pseudometric-Metric-Space B) is-emb-short-isometry-Metric-Space : is-emb short-isometry-Metric-Space is-emb-short-isometry-Metric-Space = is-emb-short-isometry-Pseudometric-Space ( pseudometric-Metric-Space A) ( pseudometric-Metric-Space B) emb-short-isometry-Metric-Space : isometry-Metric-Space A B ↪ short-function-Metric-Space A B emb-short-isometry-Metric-Space = emb-short-isometry-Pseudometric-Space ( pseudometric-Metric-Space A) ( pseudometric-Metric-Space B)
See also
External links
- Metric map at Wikidata
- Short maps at Lab
- Metric maps at Wikipedia
Recent changes
- 2025-08-18. malarbol and Louis Wasserman. Refactor metric spaces (#1450).
- 2025-03-30. Louis Wasserman. Continuity of functions between metric spaces (#1375).
- 2024-09-28. malarbol and Fredrik Bakke. Metric spaces (#1162).