Short functions between metric spaces
Content created by Fredrik Bakke and malarbol.
Created on 2024-09-28.
Last modified on 2024-09-28.
module metric-spaces.short-functions-metric-spaces where
Imports
open import elementary-number-theory.positive-rational-numbers open import foundation.dependent-pair-types open import foundation.embeddings open import foundation.equivalences open import foundation.function-extensionality open import foundation.function-types open import foundation.homotopies open import foundation.identity-types open import foundation.propositional-truncations open import foundation.propositions open import foundation.sequences open import foundation.sets open import foundation.subtypes open import foundation.universe-levels open import metric-spaces.functions-metric-spaces open import metric-spaces.isometries-metric-spaces open import metric-spaces.metric-spaces open import metric-spaces.short-functions-premetric-spaces
Idea
A function f
between two
metric spaces A
and B
is
short¶
if it is short on their
carrier premetric spaces: for any points
x
and y
that are d
-neighbors in
A
, f x
and f y
are d
-neighbors in B
. I.e., upper bounds of the
distance between two points in A
are upper bounds of the distances of their
images.
Definitions
The property of being a short function between metric spaces
module _ {l1 l2 l1' l2' : Level} (A : Metric-Space l1 l2) (B : Metric-Space l1' l2') (f : map-type-Metric-Space A B) where is-short-function-prop-Metric-Space : Prop (l1 ⊔ l2 ⊔ l2') is-short-function-prop-Metric-Space = is-short-function-prop-Premetric-Space ( premetric-Metric-Space A) ( premetric-Metric-Space B) ( f) is-short-function-Metric-Space : UU (l1 ⊔ l2 ⊔ l2') is-short-function-Metric-Space = type-Prop is-short-function-prop-Metric-Space is-prop-is-short-function-Metric-Space : is-prop is-short-function-Metric-Space is-prop-is-short-function-Metric-Space = is-prop-type-Prop is-short-function-prop-Metric-Space
The set of short functions between metric spaces
module _ {l1 l2 l1' l2' : Level} (A : Metric-Space l1 l2) (B : Metric-Space l1' l2') where set-short-function-Metric-Space : Set (l1 ⊔ l2 ⊔ l1' ⊔ l2') set-short-function-Metric-Space = set-subset ( set-map-type-Metric-Space A B) ( is-short-function-prop-Metric-Space A B) short-function-Metric-Space : UU (l1 ⊔ l2 ⊔ l1' ⊔ l2') short-function-Metric-Space = type-Set set-short-function-Metric-Space is-set-short-function-Metric-Space : is-set short-function-Metric-Space is-set-short-function-Metric-Space = is-set-type-Set set-short-function-Metric-Space module _ {l1 l2 l1' l2' : Level} (A : Metric-Space l1 l2) (B : Metric-Space l1' l2') (f : short-function-Metric-Space A B) where map-short-function-Metric-Space : map-type-Metric-Space A B map-short-function-Metric-Space = map-short-function-Premetric-Space ( premetric-Metric-Space A) ( premetric-Metric-Space B) ( f) is-short-map-short-function-Metric-Space : is-short-function-Metric-Space A B map-short-function-Metric-Space is-short-map-short-function-Metric-Space = is-short-map-short-function-Premetric-Space ( premetric-Metric-Space A) ( premetric-Metric-Space B) ( f)
Properties
The identity function on a metric space is short
module _ {l1 l2 : Level} (A : Metric-Space l1 l2) where is-short-id-Metric-Space : is-short-function-Metric-Space A A (id-Metric-Space A) is-short-id-Metric-Space d x y H = H short-id-Metric-Space : short-function-Metric-Space A A short-id-Metric-Space = id-Metric-Space A , is-short-id-Metric-Space
Equality of short functions between metric spaces is characterized by homotopy of their carrier maps
module _ {l1 l2 l1' l2' : Level} (A : Metric-Space l1 l2) (B : Metric-Space l1' l2') (f g : short-function-Metric-Space A B) where equiv-eq-htpy-map-short-function-Metric-Space : ( f = g) ≃ ( map-short-function-Metric-Space A B f ~ map-short-function-Metric-Space A B g) equiv-eq-htpy-map-short-function-Metric-Space = equiv-funext ∘e extensionality-type-subtype' ( is-short-function-prop-Metric-Space A B) f g eq-htpy-map-short-function-Metric-Space : ( map-short-function-Metric-Space A B f ~ map-short-function-Metric-Space A B g) → ( f = g) eq-htpy-map-short-function-Metric-Space = map-inv-equiv equiv-eq-htpy-map-short-function-Metric-Space
Composition of short functions
module _ {l1a l2a l1b l2b l1c l2c : Level} (A : Metric-Space l1a l2a) (B : Metric-Space l1b l2b) (C : Metric-Space l1c l2c) where comp-short-function-Metric-Space : short-function-Metric-Space B C → short-function-Metric-Space A B → short-function-Metric-Space A C comp-short-function-Metric-Space = comp-short-function-Premetric-Space ( premetric-Metric-Space A) ( premetric-Metric-Space B) ( premetric-Metric-Space C)
Unit laws for composition of short maps between metric spaces
module _ {l1a l2a l1b l2b : Level} (A : Metric-Space l1a l2a) (B : Metric-Space l1b l2b) (f : short-function-Metric-Space A B) where left-unit-law-comp-short-function-Metric-Space : ( comp-short-function-Metric-Space A B B ( short-id-Metric-Space B) ( f)) = ( f) left-unit-law-comp-short-function-Metric-Space = eq-htpy-map-short-function-Metric-Space ( A) ( B) ( comp-short-function-Metric-Space ( A) ( B) ( B) ( short-id-Metric-Space B) ( f)) ( f) ( λ x → refl) right-unit-law-comp-short-function-Metric-Space : ( comp-short-function-Metric-Space A A B ( f) ( short-id-Metric-Space A)) = ( f) right-unit-law-comp-short-function-Metric-Space = eq-htpy-map-short-function-Metric-Space ( A) ( B) ( f) ( comp-short-function-Metric-Space ( A) ( A) ( B) ( f) ( short-id-Metric-Space A)) ( λ x → refl)
Associatity of composition of short maps between metric spaces
module _ {l1a l2a l1b l2b l1c l2c l1d l2d : Level} (A : Metric-Space l1a l2a) (B : Metric-Space l1b l2b) (C : Metric-Space l1c l2c) (D : Metric-Space l1d l2d) (h : short-function-Metric-Space C D) (g : short-function-Metric-Space B C) (f : short-function-Metric-Space A B) where associative-comp-short-function-Metric-Space : ( comp-short-function-Metric-Space A B D ( comp-short-function-Metric-Space B C D h g) ( f)) = ( comp-short-function-Metric-Space A C D ( h) ( comp-short-function-Metric-Space A B C g f)) associative-comp-short-function-Metric-Space = eq-htpy-map-short-function-Metric-Space ( A) ( D) ( comp-short-function-Metric-Space A B D ( comp-short-function-Metric-Space B C D h g) ( f)) ( comp-short-function-Metric-Space A C D ( h) ( comp-short-function-Metric-Space A B C g f)) ( λ x → refl)
Constant functions between metric spaces are short
module _ {l1 l2 l1' l2' : Level} (A : Metric-Space l1 l2) (B : Metric-Space l1' l2') (b : type-Metric-Space B) where is-short-constant-function-Metric-Space : is-short-function-Metric-Space A B (λ _ → b) is-short-constant-function-Metric-Space ε x y H = is-reflexive-structure-Metric-Space B ε b
Any isometry between metric spaces is short
module _ {l1 l2 l1' l2' : Level} (A : Metric-Space l1 l2) (B : Metric-Space l1' l2') (f : map-type-Metric-Space A B) where is-short-is-isometry-Metric-Space : is-isometry-Metric-Space A B f → is-short-function-Metric-Space A B f is-short-is-isometry-Metric-Space = is-short-is-isometry-Premetric-Space ( premetric-Metric-Space A) ( premetric-Metric-Space B) ( f)
The embedding of isometries of metric spaces into short maps
module _ {l1 l2 l1' l2' : Level} (A : Metric-Space l1 l2) (B : Metric-Space l1' l2') where short-isometry-Metric-Space : isometry-Metric-Space A B → short-function-Metric-Space A B short-isometry-Metric-Space f = map-isometry-Metric-Space A B f , is-short-is-isometry-Metric-Space ( A) ( B) ( map-isometry-Metric-Space A B f) ( is-isometry-map-isometry-Metric-Space A B f) is-emb-short-isometry-Metric-Space : is-emb short-isometry-Metric-Space is-emb-short-isometry-Metric-Space = is-emb-right-factor ( map-short-function-Metric-Space A B) ( short-isometry-Metric-Space) ( is-emb-inclusion-subtype (is-short-function-prop-Metric-Space A B)) ( is-emb-htpy ( λ f → refl) ( is-emb-inclusion-subtype (is-isometry-prop-Metric-Space A B)))
See also
External links
- Metric map at Mathswitch
- Short maps at Lab
- Metric maps at Wikipedia
Recent changes
- 2024-09-28. malarbol and Fredrik Bakke. Metric spaces (#1162).