The binary minimum of real numbers is a short function
Content created by Louis Wasserman.
Created on 2025-11-15.
Last modified on 2025-11-15.
{-# OPTIONS --lossy-unification #-} module real-numbers.short-function-binary-minimum-real-numbers where
Imports
open import foundation.dependent-pair-types open import foundation.universe-levels open import metric-spaces.short-functions-metric-spaces open import real-numbers.binary-maximum-real-numbers open import real-numbers.binary-minimum-real-numbers open import real-numbers.dedekind-real-numbers open import real-numbers.isometry-negation-real-numbers open import real-numbers.metric-space-of-real-numbers open import real-numbers.negation-real-numbers open import real-numbers.short-function-binary-maximum-real-numbers
Idea
For any a : ℝ, the
binary minimum with a is a
short function ℝ → ℝ for the
standard real metric structure.
Proof
module _ {l1 l2 : Level} (x : ℝ l1) where abstract opaque unfolding min-ℝ is-short-function-left-min-ℝ : is-short-function-Metric-Space ( metric-space-ℝ l2) ( metric-space-ℝ (l1 ⊔ l2)) ( min-ℝ x) is-short-function-left-min-ℝ = is-short-comp-is-short-function-Metric-Space ( metric-space-ℝ l2) ( metric-space-ℝ (l1 ⊔ l2)) ( metric-space-ℝ (l1 ⊔ l2)) ( neg-ℝ) ( λ y → max-ℝ (neg-ℝ x) (neg-ℝ y)) ( is-short-neg-ℝ) ( is-short-comp-is-short-function-Metric-Space ( metric-space-ℝ l2) ( metric-space-ℝ l2) ( metric-space-ℝ (l1 ⊔ l2)) ( max-ℝ (neg-ℝ x)) ( neg-ℝ) ( is-short-function-left-max-ℝ (neg-ℝ x)) ( is-short-neg-ℝ)) short-left-min-ℝ : short-function-Metric-Space ( metric-space-ℝ l2) ( metric-space-ℝ (l1 ⊔ l2)) short-left-min-ℝ = (min-ℝ x , is-short-function-left-min-ℝ)
Recent changes
- 2025-11-15. Louis Wasserman. Every point in a proper closed interval in the real numbers is an accumulation point (#1679).