Modulated uniformly continuous functions between metric spaces
Content created by Louis Wasserman.
Created on 2025-10-19.
Last modified on 2025-10-19.
module metric-spaces.modulated-uniformly-continuous-functions-metric-spaces where
Imports
open import elementary-number-theory.addition-positive-rational-numbers open import elementary-number-theory.minimum-positive-rational-numbers open import elementary-number-theory.positive-rational-numbers open import foundation.dependent-pair-types open import foundation.existential-quantification open import foundation.function-types open import foundation.functoriality-cartesian-product-types open import foundation.logical-equivalences open import foundation.propositions open import foundation.subtypes open import foundation.transport-along-identifications open import foundation.universe-levels open import metric-spaces.cartesian-products-metric-spaces open import metric-spaces.continuous-functions-metric-spaces open import metric-spaces.functions-metric-spaces open import metric-spaces.isometries-metric-spaces open import metric-spaces.metric-spaces open import metric-spaces.short-functions-metric-spaces
Idea
Given a function f
between
metric spaces X
and Y
, a
modulus of uniform continuity¶
is a function m : ℚ⁺ → ℚ⁺
such that for any x : X
, whenever x'
is in an
m ε
-neighborhood of x
, f x'
is in an ε
-neighborhood of f x
. A function
f
paired with a modulus of uniform continuity m
is called a
modulated uniformly continuous function¶
from X
to Y
.
Definition
module _ {l1 l2 l3 l4 : Level} (X : Metric-Space l1 l2) (Y : Metric-Space l3 l4) (f : type-function-Metric-Space X Y) where is-modulus-of-uniform-continuity-prop-function-Metric-Space : (ℚ⁺ → ℚ⁺) → Prop (l1 ⊔ l2 ⊔ l4) is-modulus-of-uniform-continuity-prop-function-Metric-Space m = Π-Prop ( type-Metric-Space X) ( λ x → is-modulus-of-continuity-at-point-prop-function-Metric-Space X Y f x m) is-modulus-of-uniform-continuity-function-Metric-Space : (ℚ⁺ → ℚ⁺) → UU (l1 ⊔ l2 ⊔ l4) is-modulus-of-uniform-continuity-function-Metric-Space m = type-Prop (is-modulus-of-uniform-continuity-prop-function-Metric-Space m) modulus-of-uniform-continuity-function-Metric-Space : UU (l1 ⊔ l2 ⊔ l4) modulus-of-uniform-continuity-function-Metric-Space = type-subtype is-modulus-of-uniform-continuity-prop-function-Metric-Space
The type of modulated uniformly continuous maps between metric spaces
module _ {l1 l2 l3 l4 : Level} (X : Metric-Space l1 l2) (Y : Metric-Space l3 l4) where modulated-ucont-map-Metric-Space : UU (l1 ⊔ l2 ⊔ l3 ⊔ l4) modulated-ucont-map-Metric-Space = Σ ( type-function-Metric-Space X Y) ( λ f → Σ ( ℚ⁺ → ℚ⁺) ( is-modulus-of-uniform-continuity-function-Metric-Space X Y f)) map-modulated-ucont-map-Metric-Space : modulated-ucont-map-Metric-Space → type-function-Metric-Space X Y map-modulated-ucont-map-Metric-Space = pr1 modulus-modulated-ucont-map-Metric-Space : modulated-ucont-map-Metric-Space → ℚ⁺ → ℚ⁺ modulus-modulated-ucont-map-Metric-Space = pr1 ∘ pr2 is-modulus-of-uniform-continuity-modulus-modulated-ucont-map-Metric-Space : (f : modulated-ucont-map-Metric-Space) → is-modulus-of-uniform-continuity-function-Metric-Space ( X) ( Y) ( map-modulated-ucont-map-Metric-Space f) ( modulus-modulated-ucont-map-Metric-Space f) is-modulus-of-uniform-continuity-modulus-modulated-ucont-map-Metric-Space = pr2 ∘ pr2
Modulated uniformly continuous functions are continuous everywhere
module _ {l1 l2 l3 l4 : Level} (X : Metric-Space l1 l2) (Y : Metric-Space l3 l4) (f : modulated-ucont-map-Metric-Space X Y) where is-continuous-at-point-map-modulated-ucont-map-Metric-Space : (x : type-Metric-Space X) → is-continuous-at-point-function-Metric-Space X Y ( map-modulated-ucont-map-Metric-Space X Y f) ( x) is-continuous-at-point-map-modulated-ucont-map-Metric-Space x = intro-exists ( modulus-modulated-ucont-map-Metric-Space X Y f) ( is-modulus-of-uniform-continuity-modulus-modulated-ucont-map-Metric-Space ( X) ( Y) ( f) ( x))
The modulated uniformly continuous identity function
module _ {l1 l2 : Level} (X : Metric-Space l1 l2) where id-modulated-ucont-map-Metric-Space : modulated-ucont-map-Metric-Space X X id-modulated-ucont-map-Metric-Space = ( id , id , λ _ _ _ → id)
The composition of modulated uniformly continuous functions
module _ {l1 l2 l3 l4 l5 l6 : Level} (X : Metric-Space l1 l2) (Y : Metric-Space l3 l4) (Z : Metric-Space l5 l6) (f : modulated-ucont-map-Metric-Space Y Z) (g : modulated-ucont-map-Metric-Space X Y) where map-comp-modulated-ucont-map-Metric-Space : type-function-Metric-Space X Z map-comp-modulated-ucont-map-Metric-Space = map-modulated-ucont-map-Metric-Space Y Z f ∘ map-modulated-ucont-map-Metric-Space X Y g abstract modulus-comp-modulated-ucont-map-Metric-Space : ℚ⁺ → ℚ⁺ modulus-comp-modulated-ucont-map-Metric-Space = modulus-modulated-ucont-map-Metric-Space X Y g ∘ modulus-modulated-ucont-map-Metric-Space Y Z f is-modulus-comp-modulated-ucont-map-Metric-Space : is-modulus-of-uniform-continuity-function-Metric-Space X Z ( map-comp-modulated-ucont-map-Metric-Space) ( modulus-comp-modulated-ucont-map-Metric-Space) is-modulus-comp-modulated-ucont-map-Metric-Space x ε x' Nε'x'' = is-modulus-of-uniform-continuity-modulus-modulated-ucont-map-Metric-Space ( Y) ( Z) ( f) ( map-modulated-ucont-map-Metric-Space X Y g x) ( ε) ( map-modulated-ucont-map-Metric-Space X Y g x') ( is-modulus-of-uniform-continuity-modulus-modulated-ucont-map-Metric-Space ( X) ( Y) ( g) ( x) ( modulus-modulated-ucont-map-Metric-Space Y Z f ε) ( x') ( Nε'x'')) comp-modulated-ucont-map-Metric-Space : modulated-ucont-map-Metric-Space X Z comp-modulated-ucont-map-Metric-Space = ( map-comp-modulated-ucont-map-Metric-Space , modulus-comp-modulated-ucont-map-Metric-Space , is-modulus-comp-modulated-ucont-map-Metric-Space)
A function is short if and only if the identity is a modulus of uniform continuity for it
module _ {l1 l2 l3 l4 : Level} (A : Metric-Space l1 l2) (B : Metric-Space l3 l4) (f : type-function-Metric-Space A B) where is-short-is-modulus-of-uniform-continuity-id-function-Metric-Space : is-modulus-of-uniform-continuity-function-Metric-Space A B f id → is-short-function-Metric-Space A B f is-short-is-modulus-of-uniform-continuity-id-function-Metric-Space H ε x = H x ε is-modulus-of-uniform-continuity-id-is-short-function-Metric-Space : is-short-function-Metric-Space A B f → is-modulus-of-uniform-continuity-function-Metric-Space A B f id is-modulus-of-uniform-continuity-id-is-short-function-Metric-Space H x ε = H ε x is-short-iff-is-modulus-of-uniform-continuity-id-function-Metric-Space : is-short-function-Metric-Space A B f ↔ is-modulus-of-uniform-continuity-function-Metric-Space A B f id is-short-iff-is-modulus-of-uniform-continuity-id-function-Metric-Space = ( is-modulus-of-uniform-continuity-id-is-short-function-Metric-Space , is-short-is-modulus-of-uniform-continuity-id-function-Metric-Space)
Modulated uniformly continuous functions from short functions
module _ {l1 l2 l3 l4 : Level} (A : Metric-Space l1 l2) (B : Metric-Space l3 l4) where modulated-ucont-map-short-function-Metric-Space : short-function-Metric-Space A B → modulated-ucont-map-Metric-Space A B modulated-ucont-map-short-function-Metric-Space (f , is-short-f) = ( f , id , is-modulus-of-uniform-continuity-id-is-short-function-Metric-Space ( A) ( B) ( f) ( is-short-f))
Isometries are uniformly continuous
module _ {l1 l2 l3 l4 : Level} (A : Metric-Space l1 l2) (B : Metric-Space l3 l4) where modulated-ucont-map-isometry-Metric-Space : isometry-Metric-Space A B → modulated-ucont-map-Metric-Space A B modulated-ucont-map-isometry-Metric-Space f = modulated-ucont-map-short-function-Metric-Space A B ( short-isometry-Metric-Space A B f)
The Cartesian product of modulated uniformly continuous functions on metric spaces
module _ {l1 l2 l3 l4 l5 l6 l7 l8 : Level} (A : Metric-Space l1 l2) (B : Metric-Space l3 l4) (C : Metric-Space l5 l6) (D : Metric-Space l7 l8) (f : modulated-ucont-map-Metric-Space A B) (g : modulated-ucont-map-Metric-Space C D) where map-product-modulated-ucont-map-Metric-Space : type-function-Metric-Space ( product-Metric-Space A C) ( product-Metric-Space B D) map-product-modulated-ucont-map-Metric-Space = map-product ( map-modulated-ucont-map-Metric-Space A B f) ( map-modulated-ucont-map-Metric-Space C D g) abstract modulus-product-modulated-ucont-map-Metric-Space : ℚ⁺ → ℚ⁺ modulus-product-modulated-ucont-map-Metric-Space ε = min-ℚ⁺ ( modulus-modulated-ucont-map-Metric-Space A B f ε) ( modulus-modulated-ucont-map-Metric-Space C D g ε) is-modulus-product-modulated-ucont-map-Metric-Space : is-modulus-of-uniform-continuity-function-Metric-Space ( product-Metric-Space A C) ( product-Metric-Space B D) ( map-product-modulated-ucont-map-Metric-Space) ( modulus-product-modulated-ucont-map-Metric-Space) is-modulus-product-modulated-ucont-map-Metric-Space (a , c) ε (a' , c') (Nε'aa' , Nε'cc') = ( is-modulus-of-uniform-continuity-modulus-modulated-ucont-map-Metric-Space ( A) ( B) ( f) ( a) ( ε) ( a') ( weakly-monotonic-neighborhood-Metric-Space A a a' _ _ ( leq-left-min-ℚ⁺ ( modulus-modulated-ucont-map-Metric-Space A B f ε) ( modulus-modulated-ucont-map-Metric-Space C D g ε)) ( Nε'aa')) , is-modulus-of-uniform-continuity-modulus-modulated-ucont-map-Metric-Space ( C) ( D) ( g) ( c) ( ε) ( c') ( weakly-monotonic-neighborhood-Metric-Space C c c' _ _ ( leq-right-min-ℚ⁺ ( modulus-modulated-ucont-map-Metric-Space A B f ε) ( modulus-modulated-ucont-map-Metric-Space C D g ε)) ( Nε'cc'))) product-modulated-ucont-map-Metric-Space : modulated-ucont-map-Metric-Space ( product-Metric-Space A C) ( product-Metric-Space B D) product-modulated-ucont-map-Metric-Space = ( map-product-modulated-ucont-map-Metric-Space , modulus-product-modulated-ucont-map-Metric-Space , is-modulus-product-modulated-ucont-map-Metric-Space)
If a binary function has a fixed modulus of uniform continuity in each argument, it is modulated uniformly continuous on the product space
module _ {l1 l2 l3 l4 l5 l6 : Level} (A : Metric-Space l1 l2) (B : Metric-Space l3 l4) (C : Metric-Space l5 l6) (f : type-Metric-Space A → type-Metric-Space B → type-Metric-Space C) (mf₁ : ℚ⁺ → ℚ⁺) (mf₂ : ℚ⁺ → ℚ⁺) (is-mod-mf₁ : (a : type-Metric-Space A) → is-modulus-of-uniform-continuity-function-Metric-Space B C ( f a) ( mf₁)) (is-mod-mf₂ : (b : type-Metric-Space B) → is-modulus-of-uniform-continuity-function-Metric-Space A C ( λ a → f a b) ( mf₂)) where abstract modulus-modulated-ucont-binary-map-Metric-Space : ℚ⁺ → ℚ⁺ modulus-modulated-ucont-binary-map-Metric-Space ε = let (δ , η , _) = split-ℚ⁺ ε in min-ℚ⁺ (mf₁ δ) (mf₂ η) is-modulus-modulated-ucont-binary-map-Metric-Space : is-modulus-of-uniform-continuity-function-Metric-Space ( product-Metric-Space A B) ( C) ( ind-Σ f) ( modulus-modulated-ucont-binary-map-Metric-Space) is-modulus-modulated-ucont-binary-map-Metric-Space (a , b) ε (a' , b') (Nε'aa' , Nε'bb') = let (δ , η , δ+η=ε) = split-ℚ⁺ ε ε' = modulus-modulated-ucont-binary-map-Metric-Space ε in tr ( λ d → neighborhood-Metric-Space C d (f a b) (f a' b')) ( δ+η=ε) ( triangular-neighborhood-Metric-Space ( C) ( f a b) ( f a b') ( f a' b') ( δ) ( η) ( is-mod-mf₂ b' a η a' ( weakly-monotonic-neighborhood-Metric-Space A a a' ( ε') ( mf₂ η) ( leq-right-min-ℚ⁺ (mf₁ δ) (mf₂ η)) ( Nε'aa'))) ( is-mod-mf₁ a b δ b' ( weakly-monotonic-neighborhood-Metric-Space B b b' ( ε') ( mf₁ δ) ( leq-left-min-ℚ⁺ (mf₁ δ) (mf₂ η)) ( Nε'bb')))) modulated-ucont-binary-map-Metric-Space : modulated-ucont-map-Metric-Space (product-Metric-Space A B) C modulated-ucont-binary-map-Metric-Space = ( ind-Σ f , modulus-modulated-ucont-binary-map-Metric-Space , is-modulus-modulated-ucont-binary-map-Metric-Space)
If a binary function is short in each argument, it is a modulated uniformly continuous function on the product metric space
module _ {l1 l2 l3 l4 l5 l6 : Level} (A : Metric-Space l1 l2) (B : Metric-Space l3 l4) (C : Metric-Space l5 l6) (f : type-Metric-Space A → type-Metric-Space B → type-Metric-Space C) (is-short-fa : (a : type-Metric-Space A) → is-short-function-Metric-Space B C (f a)) (is-short-fb : (b : type-Metric-Space B) → is-short-function-Metric-Space A C (λ a → f a b)) where modulated-ucont-short-binary-map-Metric-Space : modulated-ucont-map-Metric-Space (product-Metric-Space A B) C modulated-ucont-short-binary-map-Metric-Space = modulated-ucont-binary-map-Metric-Space A B C f ( id) ( id) ( λ a → is-modulus-of-uniform-continuity-id-is-short-function-Metric-Space ( B) ( C) ( f a) ( is-short-fa a)) ( λ b → is-modulus-of-uniform-continuity-id-is-short-function-Metric-Space ( A) ( C) ( λ a → f a b) ( is-short-fb b))
If a binary function is an isometry in each argument, it is a modulated uniformly continuous function on the product metric space
module _ {l1 l2 l3 l4 l5 l6 : Level} (A : Metric-Space l1 l2) (B : Metric-Space l3 l4) (C : Metric-Space l5 l6) (f : type-Metric-Space A → type-Metric-Space B → type-Metric-Space C) (is-iso-fa : (a : type-Metric-Space A) → is-isometry-Metric-Space B C (f a)) (is-iso-fb : (b : type-Metric-Space B) → is-isometry-Metric-Space A C (λ a → f a b)) where modulated-ucont-binary-isometry-Metric-Space : modulated-ucont-map-Metric-Space (product-Metric-Space A B) C modulated-ucont-binary-isometry-Metric-Space = modulated-ucont-short-binary-map-Metric-Space A B C f ( λ a → is-short-is-isometry-Metric-Space B C (f a) (is-iso-fa a)) ( λ b → is-short-is-isometry-Metric-Space A C (λ a → f a b) (is-iso-fb b))
See also
Recent changes
- 2025-10-19. Louis Wasserman. Adding limits and Cauchy sequences in the real numbers (#1603).