Limits of functions between metric spaces
Content created by Louis Wasserman and malarbol.
Created on 2025-08-18.
Last modified on 2025-08-18.
module metric-spaces.limits-of-functions-metric-spaces where
Imports
open import elementary-number-theory.positive-rational-numbers open import foundation.dependent-pair-types open import foundation.existential-quantification open import foundation.inhabited-subtypes open import foundation.propositional-truncations open import foundation.propositions open import foundation.subtypes open import foundation.universe-levels open import metric-spaces.functions-metric-spaces open import metric-spaces.metric-spaces
Idea
A function f
between
metric spaces X
and Y
has a
limit¶
y : Y
at a point x : X
if there exists a function m : ℚ⁺ → ℚ⁺
such that
whenever x'
is in an m ε
-neighborhood of x
, f x'
is in an
ε
-neighborhood of y
. In this case m
is called a limit modulus of f
at
x
.
Definitions
module _ {l1 l2 l3 l4 : Level} (X : Metric-Space l1 l2) (Y : Metric-Space l3 l4) (f : type-function-Metric-Space X Y) (x : type-Metric-Space X) (y : type-Metric-Space Y) where is-modulus-of-point-limit-prop-function-Metric-Space : (ℚ⁺ → ℚ⁺) → Prop (l1 ⊔ l2 ⊔ l4) is-modulus-of-point-limit-prop-function-Metric-Space m = Π-Prop ( ℚ⁺) ( λ ε → Π-Prop ( type-Metric-Space X) ( λ x' → neighborhood-prop-Metric-Space X (m ε) x x' ⇒ neighborhood-prop-Metric-Space Y ε y (f x'))) is-modulus-of-point-limit-function-Metric-Space : (ℚ⁺ → ℚ⁺) → UU (l1 ⊔ l2 ⊔ l4) is-modulus-of-point-limit-function-Metric-Space m = type-Prop (is-modulus-of-point-limit-prop-function-Metric-Space m) is-point-limit-prop-function-Metric-Space : Prop (l1 ⊔ l2 ⊔ l4) is-point-limit-prop-function-Metric-Space = is-inhabited-subtype-Prop is-modulus-of-point-limit-prop-function-Metric-Space is-point-limit-function-Metric-Space : UU (l1 ⊔ l2 ⊔ l4) is-point-limit-function-Metric-Space = type-Prop is-point-limit-prop-function-Metric-Space
Recent changes
- 2025-08-18. malarbol and Louis Wasserman. Refactor metric spaces (#1450).