Images of metric spaces under uniformly continuous functions
Content created by Louis Wasserman.
Created on 2025-08-31.
Last modified on 2025-08-31.
module metric-spaces.images-uniformly-continuous-functions-metric-spaces where
Imports
open import elementary-number-theory.positive-rational-numbers open import foundation.dependent-pair-types open import foundation.images open import foundation.universe-levels open import metric-spaces.functions-metric-spaces open import metric-spaces.images-metric-spaces open import metric-spaces.metric-spaces open import metric-spaces.uniformly-continuous-functions-metric-spaces
Idea
Given a
uniformly continuous function
between metric spaces f : X → Y
, the unit
map of the image of f
is uniformly
continuous. Any modulus of uniform continuity for f
is a modulus of uniform
continuity for the unit map of the image.
Definition
module _ {l1 l2 l3 l4 : Level} (X : Metric-Space l1 l2) (Y : Metric-Space l3 l4) (f : uniformly-continuous-function-Metric-Space X Y) where im-uniformly-continuous-function-Metric-Space : Metric-Space (l1 ⊔ l3) l4 im-uniformly-continuous-function-Metric-Space = im-Metric-Space X Y (map-uniformly-continuous-function-Metric-Space X Y f) map-unit-im-uniformly-continuous-function-Metric-Space : type-function-Metric-Space X im-uniformly-continuous-function-Metric-Space map-unit-im-uniformly-continuous-function-Metric-Space = map-unit-im (map-uniformly-continuous-function-Metric-Space X Y f)
Properties
Any modulus of uniform continuity for a function is a modulus of uniform continuity for the unit map of its image
module _ {l1 l2 l3 l4 : Level} (X : Metric-Space l1 l2) (Y : Metric-Space l3 l4) (f : type-function-Metric-Space X Y) where is-modulus-of-uniform-continuity-map-unit-im-modulus-of-uniform-continuity-function-Metric-Space : {μ : ℚ⁺ → ℚ⁺} → is-modulus-of-uniform-continuity-function-Metric-Space X Y f μ → is-modulus-of-uniform-continuity-function-Metric-Space ( X) ( im-Metric-Space X Y f) ( map-unit-im f) ( μ) is-modulus-of-uniform-continuity-map-unit-im-modulus-of-uniform-continuity-function-Metric-Space is-modulus-μ = is-modulus-μ
The unit map of a uniformly continuous function is uniformly continuous
module _ {l1 l2 l3 l4 : Level} (X : Metric-Space l1 l2) (Y : Metric-Space l3 l4) (f : uniformly-continuous-function-Metric-Space X Y) where is-uniformly-continuous-map-unit-im-uniformly-continuous-function-Metric-Space : is-uniformly-continuous-function-Metric-Space ( X) ( im-uniformly-continuous-function-Metric-Space X Y f) ( map-unit-im-uniformly-continuous-function-Metric-Space X Y f) is-uniformly-continuous-map-unit-im-uniformly-continuous-function-Metric-Space = is-uniformly-continuous-map-uniformly-continuous-function-Metric-Space X Y f uniformly-continuous-map-unit-im-uniformly-continuous-function-Metric-Space : uniformly-continuous-function-Metric-Space ( X) ( im-uniformly-continuous-function-Metric-Space X Y f) uniformly-continuous-map-unit-im-uniformly-continuous-function-Metric-Space = ( map-unit-im-uniformly-continuous-function-Metric-Space X Y f , is-uniformly-continuous-map-unit-im-uniformly-continuous-function-Metric-Space)
Recent changes
- 2025-08-31. Louis Wasserman. The image of a totally bounded metric space under a uniformly continuous function is totally bounded (#1513).