The metric space of functions between metric spaces

Content created by malarbol.

Created on 2025-05-05.
Last modified on 2025-05-05.

module metric-spaces.metric-space-of-functions-metric-spaces where
Imports
open import elementary-number-theory.positive-rational-numbers

open import foundation.dependent-pair-types
open import foundation.universe-levels

open import metric-spaces.cauchy-approximations-metric-spaces
open import metric-spaces.convergent-cauchy-approximations-metric-spaces
open import metric-spaces.dependent-products-metric-spaces
open import metric-spaces.functions-metric-spaces
open import metric-spaces.isometries-metric-spaces
open import metric-spaces.metric-spaces

Idea

Functions between metric spaces inherit the product metric structure of their codomain. This defines the metric space of functions between metric spaces.

Definitions

The metric space of functions between metric spaces

module _
  {l1 l2 l1' l2' : Level}
  (A : Metric-Space l1 l2) (B : Metric-Space l1' l2')
  where

  metric-space-of-functions-Metric-Space : Metric-Space (l1  l1') (l1  l2')
  metric-space-of-functions-Metric-Space =
    Π-Metric-Space (type-Metric-Space A)  _  B)

Properties

The partial applications of a Cauchy approximation of functions form a Cauchy approximation

module _
  { l1 l2 l1' l2' : Level}
  ( A : Metric-Space l1 l2) (B : Metric-Space l1' l2')
  ( f :
    cauchy-approximation-Metric-Space
      ( metric-space-of-functions-Metric-Space A B))
  ( x : type-Metric-Space A)
  where

  ev-cauchy-approximation-function-Metric-Space :
    cauchy-approximation-Metric-Space B
  ev-cauchy-approximation-function-Metric-Space =
    ev-cauchy-approximation-Π-Metric-Space
      ( type-Metric-Space A)
      ( λ _  B)
      ( f)
      ( x)

A function is the limit of a Cauchy approximation of functions if and only if it is the pointwise limit of its partial applications

module _
  { l1 l2 l1' l2' : Level}
  ( A : Metric-Space l1 l2) (B : Metric-Space l1' l2')
  ( f :
    cauchy-approximation-Metric-Space
      ( metric-space-of-functions-Metric-Space A B))
  ( g : map-type-Metric-Space A B)
  where

  is-pointwise-limit-is-limit-cauchy-approximation-function-Metric-Space :
    is-limit-cauchy-approximation-Metric-Space
      ( metric-space-of-functions-Metric-Space A B)
      ( f)
      ( g) 
    (x : type-Metric-Space A) 
    is-limit-cauchy-approximation-Metric-Space
      ( B)
      ( ev-cauchy-approximation-function-Metric-Space A B f x)
      ( g x)
  is-pointwise-limit-is-limit-cauchy-approximation-function-Metric-Space =
    is-pointwise-limit-is-limit-cauchy-approximation-Π-Metric-Space
      ( type-Metric-Space A)
      ( λ _  B)
      ( f)
      ( g)

  is-limit-is-pointwise-limit-cauchy-approximation-function-Metric-Space :
    ( (x : type-Metric-Space A) 
      is-limit-cauchy-approximation-Metric-Space
        ( B)
        ( ev-cauchy-approximation-function-Metric-Space A B f x)
        ( g x)) 
    is-limit-cauchy-approximation-Metric-Space
      ( metric-space-of-functions-Metric-Space A B)
      ( f)
      ( g)
  is-limit-is-pointwise-limit-cauchy-approximation-function-Metric-Space =
    is-limit-is-pointwise-limit-cauchy-approximation-Π-Metric-Space
      ( type-Metric-Space A)
      ( λ _  B)
      ( f)
      ( g)

Recent changes