The metric space of functions between metric spaces
Content created by malarbol.
Created on 2025-05-05.
Last modified on 2025-05-05.
module metric-spaces.metric-space-of-functions-metric-spaces where
Imports
open import elementary-number-theory.positive-rational-numbers open import foundation.dependent-pair-types open import foundation.universe-levels open import metric-spaces.cauchy-approximations-metric-spaces open import metric-spaces.convergent-cauchy-approximations-metric-spaces open import metric-spaces.dependent-products-metric-spaces open import metric-spaces.functions-metric-spaces open import metric-spaces.isometries-metric-spaces open import metric-spaces.metric-spaces
Idea
Functions between metric spaces inherit the product metric structure of their codomain. This defines the metric space of functions between metric spaces¶.
Definitions
The metric space of functions between metric spaces
module _ {l1 l2 l1' l2' : Level} (A : Metric-Space l1 l2) (B : Metric-Space l1' l2') where metric-space-of-functions-Metric-Space : Metric-Space (l1 ⊔ l1') (l1 ⊔ l2') metric-space-of-functions-Metric-Space = Π-Metric-Space (type-Metric-Space A) (λ _ → B)
Properties
The partial applications of a Cauchy approximation of functions form a Cauchy approximation
module _ { l1 l2 l1' l2' : Level} ( A : Metric-Space l1 l2) (B : Metric-Space l1' l2') ( f : cauchy-approximation-Metric-Space ( metric-space-of-functions-Metric-Space A B)) ( x : type-Metric-Space A) where ev-cauchy-approximation-function-Metric-Space : cauchy-approximation-Metric-Space B ev-cauchy-approximation-function-Metric-Space = ev-cauchy-approximation-Π-Metric-Space ( type-Metric-Space A) ( λ _ → B) ( f) ( x)
A function is the limit of a Cauchy approximation of functions if and only if it is the pointwise limit of its partial applications
module _ { l1 l2 l1' l2' : Level} ( A : Metric-Space l1 l2) (B : Metric-Space l1' l2') ( f : cauchy-approximation-Metric-Space ( metric-space-of-functions-Metric-Space A B)) ( g : map-type-Metric-Space A B) where is-pointwise-limit-is-limit-cauchy-approximation-function-Metric-Space : is-limit-cauchy-approximation-Metric-Space ( metric-space-of-functions-Metric-Space A B) ( f) ( g) → (x : type-Metric-Space A) → is-limit-cauchy-approximation-Metric-Space ( B) ( ev-cauchy-approximation-function-Metric-Space A B f x) ( g x) is-pointwise-limit-is-limit-cauchy-approximation-function-Metric-Space = is-pointwise-limit-is-limit-cauchy-approximation-Π-Metric-Space ( type-Metric-Space A) ( λ _ → B) ( f) ( g) is-limit-is-pointwise-limit-cauchy-approximation-function-Metric-Space : ( (x : type-Metric-Space A) → is-limit-cauchy-approximation-Metric-Space ( B) ( ev-cauchy-approximation-function-Metric-Space A B f x) ( g x)) → is-limit-cauchy-approximation-Metric-Space ( metric-space-of-functions-Metric-Space A B) ( f) ( g) is-limit-is-pointwise-limit-cauchy-approximation-function-Metric-Space = is-limit-is-pointwise-limit-cauchy-approximation-Π-Metric-Space ( type-Metric-Space A) ( λ _ → B) ( f) ( g)
Recent changes
- 2025-05-05. malarbol. Metric properties of real negation, absolute value, addition and maximum (#1398).