Uniformly continuous functions between metric spaces

Content created by Louis Wasserman.

Created on 2025-03-30.
Last modified on 2025-03-30.

module metric-spaces.uniformly-continuous-functions-metric-spaces where
Imports
open import elementary-number-theory.positive-rational-numbers

open import foundation.function-types
open import foundation.propositions
open import foundation.universe-levels

open import metric-spaces.continuous-functions-metric-spaces
open import metric-spaces.functions-metric-spaces
open import metric-spaces.metric-spaces
open import metric-spaces.uniformly-continuous-functions-premetric-spaces

Idea

A function f between metric spaces X and Y is uniformly continuous if there exists a function m : ℚ⁺ → ℚ⁺ such that for any x : X, whenever x' is in an m ε-neighborhood of x, f x' is in an ε-neighborhood of f x. The function m is called a modulus of uniform continuity of f.

Definitions

module _
  {l1 l2 l3 l4 : Level} (X : Metric-Space l1 l2) (Y : Metric-Space l3 l4)
  (f : map-type-Metric-Space X Y)
  where

  is-modulus-of-uniform-continuity-prop-Metric-Space :
    (ℚ⁺  ℚ⁺)  Prop (l1  l2  l4)
  is-modulus-of-uniform-continuity-prop-Metric-Space =
    is-modulus-of-uniform-continuity-prop-Premetric-Space
      ( premetric-Metric-Space X)
      ( premetric-Metric-Space Y)
      ( f)

  is-uniformly-continuous-map-prop-Metric-Space : Prop (l1  l2  l4)
  is-uniformly-continuous-map-prop-Metric-Space =
    is-uniformly-continuous-map-prop-Premetric-Space
      ( premetric-Metric-Space X)
      ( premetric-Metric-Space Y)
      ( f)

  is-uniformly-continuous-map-Metric-Space : UU (l1  l2  l4)
  is-uniformly-continuous-map-Metric-Space =
    is-uniformly-continuous-map-Premetric-Space
      ( premetric-Metric-Space X)
      ( premetric-Metric-Space Y)
      ( f)

  is-continuous-at-point-is-uniformly-continuous-map-Metric-Space :
    is-uniformly-continuous-map-Metric-Space  (x : type-Metric-Space X) 
    is-continuous-at-point-Metric-Space X Y f x
  is-continuous-at-point-is-uniformly-continuous-map-Metric-Space =
    is-continuous-at-point-is-uniformly-continuous-map-Premetric-Space
      ( premetric-Metric-Space X)
      ( premetric-Metric-Space Y)
      ( f)

Properties

The identity function is uniformly continuous

module _
  {l1 l2 : Level} (X : Metric-Space l1 l2)
  where

  is-uniformly-continuous-map-id-Metric-Space :
    is-uniformly-continuous-map-Metric-Space X X id
  is-uniformly-continuous-map-id-Metric-Space =
    is-uniformly-continuous-map-id-Premetric-Space
      ( premetric-Metric-Space X)

The composition of uniformly continuous functions is uniformly continuous

module _
  {l1 l2 l3 l4 l5 l6 : Level}
  (X : Metric-Space l1 l2) (Y : Metric-Space l3 l4) (Z : Metric-Space l5 l6)
  (f : map-type-Metric-Space Y Z) (g : map-type-Metric-Space X Y)
  where

  is-uniformly-continuous-map-comp-Metric-Space :
    is-uniformly-continuous-map-Metric-Space Y Z f 
    is-uniformly-continuous-map-Metric-Space X Y g 
    is-uniformly-continuous-map-Metric-Space X Z (f  g)
  is-uniformly-continuous-map-comp-Metric-Space =
    is-uniformly-continuous-map-comp-Premetric-Space
      ( premetric-Metric-Space X)
      ( premetric-Metric-Space Y)
      ( premetric-Metric-Space Z)
      ( f)
      ( g)

Recent changes