Uniformly continuous functions of real numbers
Content created by Louis Wasserman.
Created on 2025-11-10.
Last modified on 2025-11-10.
{-# OPTIONS --lossy-unification #-} module real-numbers.uniformly-continuous-functions-real-numbers where
Imports
open import foundation.universe-levels open import metric-spaces.uniformly-continuous-functions-metric-spaces open import real-numbers.dedekind-real-numbers open import real-numbers.metric-space-of-real-numbers
Idea
A
uniformly continuous function¶
from the real numbers to the real
numbers is a function f : ℝ → ℝ such that there
exists a modulus μ : ℚ⁺ → ℚ⁺ such
that for all x y : ℝ within a
μ ε-neighborhood of each
other, f x and f y are within an ε-neighborhood.
Definition
uniformly-continuous-function-ℝ : (l1 l2 : Level) → UU (lsuc l1 ⊔ lsuc l2) uniformly-continuous-function-ℝ l1 l2 = uniformly-continuous-function-Metric-Space ( metric-space-ℝ l1) ( metric-space-ℝ l2) comp-uniformly-continuous-function-ℝ : {l1 l2 l3 : Level} → uniformly-continuous-function-ℝ l2 l3 → uniformly-continuous-function-ℝ l1 l2 → uniformly-continuous-function-ℝ l1 l3 comp-uniformly-continuous-function-ℝ {l1} {l2} {l3} = comp-uniformly-continuous-function-Metric-Space ( metric-space-ℝ l1) ( metric-space-ℝ l2) ( metric-space-ℝ l3) map-uniformly-continuous-function-ℝ : {l1 l2 : Level} → uniformly-continuous-function-ℝ l1 l2 → ℝ l1 → ℝ l2 map-uniformly-continuous-function-ℝ {l1} {l2} = map-uniformly-continuous-function-Metric-Space ( metric-space-ℝ l1) ( metric-space-ℝ l2)
Recent changes
- 2025-11-10. Louis Wasserman. The sum of geometric series in the real numbers (#1676).