Functions between metric spaces
Content created by Fredrik Bakke and malarbol.
Created on 2024-09-28.
Last modified on 2024-09-28.
module metric-spaces.functions-metric-spaces where
Imports
open import foundation.dependent-pair-types open import foundation.function-types open import foundation.sets open import foundation.universe-levels open import metric-spaces.metric-spaces open import metric-spaces.premetric-spaces
Idea
Functions¶ between metric spaces are functions between their carrier types.
Definitions
Functions between metric spaces
module _ {l1 l2 l1' l2' : Level} (A : Metric-Space l1 l2) (B : Metric-Space l1' l2') where map-type-Metric-Space : UU (l1 ⊔ l1') map-type-Metric-Space = map-type-Premetric-Space ( premetric-Metric-Space A) ( premetric-Metric-Space B)
The identity function on a metric space
module _ {l1 l2 : Level} (M : Metric-Space l1 l2) where id-Metric-Space : map-type-Metric-Space M M id-Metric-Space = id
Properties
The type of functions between metric spaces is a set
module _ {l1 l2 l1' l2' : Level} (A : Metric-Space l1 l2) (B : Metric-Space l1' l2') where is-set-map-type-Metric-Space : is-set (map-type-Metric-Space A B) is-set-map-type-Metric-Space = is-set-Π (λ x → is-set-type-Metric-Space B) set-map-type-Metric-Space : Set (l1 ⊔ l1') set-map-type-Metric-Space = map-type-Metric-Space A B , is-set-map-type-Metric-Space
Recent changes
- 2024-09-28. malarbol and Fredrik Bakke. Metric spaces (#1162).