The precategory of metric spaces and short functions
Content created by Fredrik Bakke and malarbol.
Created on 2024-09-28.
Last modified on 2024-09-28.
module metric-spaces.precategory-of-metric-spaces-and-short-functions where
Imports
open import category-theory.isomorphisms-in-precategories open import category-theory.precategories open import foundation.action-on-identifications-functions open import foundation.binary-transport open import foundation.contractible-types open import foundation.dependent-pair-types open import foundation.equivalences open import foundation.function-extensionality open import foundation.function-types open import foundation.functoriality-dependent-pair-types open import foundation.identity-types open import foundation.logical-equivalences open import foundation.propositions open import foundation.torsorial-type-families open import foundation.type-arithmetic-dependent-pair-types open import foundation.universe-levels open import metric-spaces.equality-of-metric-spaces open import metric-spaces.functions-metric-spaces open import metric-spaces.isometric-equivalences-premetric-spaces open import metric-spaces.isometries-metric-spaces open import metric-spaces.metric-spaces open import metric-spaces.precategory-of-metric-spaces-and-isometries open import metric-spaces.short-functions-metric-spaces
Idea
The short functions between metric spaces form a precategory.
Definition
module _ {l1 l2 : Level} where precategory-short-function-Metric-Space : Precategory (lsuc l1 ⊔ lsuc l2) (l1 ⊔ l2) precategory-short-function-Metric-Space = make-Precategory ( Metric-Space l1 l2) ( set-short-function-Metric-Space) ( λ {A B C} → comp-short-function-Metric-Space A B C) ( short-id-Metric-Space) ( λ {A B C D} → associative-comp-short-function-Metric-Space A B C D) ( λ {A B} → left-unit-law-comp-short-function-Metric-Space A B) ( λ {A B} → right-unit-law-comp-short-function-Metric-Space A B)
Properties
Isomorphisms in the precategory of metric spaces and short maps are equivalences
module _ {l1 l2 : Level} (A B : Metric-Space l1 l2) (f : short-function-Metric-Space A B) where is-equiv-is-iso-short-function-Metric-Space : is-iso-Precategory precategory-short-function-Metric-Space {A} {B} f → is-equiv (map-short-function-Metric-Space A B f) is-equiv-is-iso-short-function-Metric-Space (g , I , J) = is-equiv-is-invertible ( map-short-function-Metric-Space B A g) ( htpy-eq (ap (map-short-function-Metric-Space B B) I)) ( htpy-eq (ap (map-short-function-Metric-Space A A) J))
Isomorphisms in the precategory of metric spaces and short maps are isometries
module _ {l1 l2 : Level} (A B : Metric-Space l1 l2) (f : short-function-Metric-Space A B) where is-isometry-is-iso-short-function-Metric-Space : is-iso-Precategory precategory-short-function-Metric-Space {A} {B} f → is-isometry-Metric-Space A B (map-short-function-Metric-Space A B f) pr1 (is-isometry-is-iso-short-function-Metric-Space I d x y) = is-short-map-short-function-Metric-Space A B f d x y pr2 (is-isometry-is-iso-short-function-Metric-Space I d x y) H = binary-tr ( neighborhood-Metric-Space A d) ( ap ( λ K → map-short-function-Metric-Space A A K x) ( is-retraction-hom-inv-is-iso-Precategory precategory-short-function-Metric-Space { A} { B} ( I))) ( ap ( λ K → map-short-function-Metric-Space A A K y) ( is-retraction-hom-inv-is-iso-Precategory precategory-short-function-Metric-Space { A} { B} ( I))) ( is-short-map-short-function-Metric-Space ( B) ( A) ( hom-inv-is-iso-Precategory ( precategory-short-function-Metric-Space) { A} { B} ( I)) ( d) ( map-short-function-Metric-Space A B f x) ( map-short-function-Metric-Space A B f y) ( H))
A short map between metric spaces is an isomorphism if and only if its carrier map is an isometric equivalence
module _ {l1 l2 : Level} (A B : Metric-Space l1 l2) (f : short-function-Metric-Space A B) where is-iso-is-isometric-equiv-short-function-Metric-Space : is-isometric-equiv-Premetric-Space ( premetric-Metric-Space A) ( premetric-Metric-Space B) ( map-short-function-Metric-Space A B f) → is-iso-Precategory precategory-short-function-Metric-Space {A} {B} f is-iso-is-isometric-equiv-short-function-Metric-Space (E , I) = ( short-inverse) , ( ( eq-htpy-map-short-function-Metric-Space ( B) ( B) ( comp-short-function-Metric-Space ( B) ( A) ( B) ( f) ( short-inverse)) ( short-id-Metric-Space B) ( is-section-map-inv-is-equiv E)) , ( eq-htpy-map-short-function-Metric-Space ( A) ( A) ( comp-short-function-Metric-Space ( A) ( B) ( A) ( short-inverse) ( f)) ( short-id-Metric-Space A) ( is-retraction-map-inv-is-equiv E))) where short-inverse : short-function-Metric-Space B A short-inverse = short-isometry-Metric-Space ( B) ( A) ( isometry-inv-is-equiv-isometry-Metric-Space ( A) ( B) ( map-short-function-Metric-Space A B f , I) ( E))
A function between metric spaces is a short isomorphism if and only if it an isometric equivalence between their carrier premetric spaces
module _ {l1 l2 : Level} (A B : Metric-Space l1 l2) (f : map-type-Metric-Space A B) where equiv-is-isometric-equiv-is-iso-short-function-Metric-Space : Σ ( is-short-function-Metric-Space A B f) ( λ s → is-iso-Precategory precategory-short-function-Metric-Space { A} { B} ( f , s)) ≃ is-isometric-equiv-Premetric-Space (premetric-Metric-Space A) (premetric-Metric-Space B) (f) equiv-is-isometric-equiv-is-iso-short-function-Metric-Space = equiv-iff ( Σ-Prop ( is-short-function-prop-Metric-Space A B f) ( λ s → is-iso-prop-Precategory precategory-short-function-Metric-Space { A} { B} ( f , s))) ( is-isometric-equiv-prop-Premetric-Space ( premetric-Metric-Space A) ( premetric-Metric-Space B) ( f)) ( λ (is-short-f , is-iso-f) → is-equiv-is-iso-short-function-Metric-Space ( A) ( B) ( f , is-short-f) ( is-iso-f) , is-isometry-is-iso-short-function-Metric-Space ( A) ( B) ( f , is-short-f) ( is-iso-f)) ( λ (is-equiv-f , is-isometry-f) → is-short-is-isometry-Metric-Space A B f is-isometry-f , is-iso-is-isometric-equiv-short-function-Metric-Space ( A) ( B) ( f , is-short-is-isometry-Metric-Space A B f is-isometry-f) ( is-equiv-f , is-isometry-f))
Two metric spaces are isomorphic in the precategory of metric spaces and short maps if and only if there is an isometric equivalence between them
module _ {l1 l2 : Level} (A B : Metric-Space l1 l2) where equiv-isometric-equiv-iso-short-function-Metric-Space' : iso-Precategory precategory-short-function-Metric-Space A B ≃ isometric-equiv-Metric-Space' A B equiv-isometric-equiv-iso-short-function-Metric-Space' = equiv-tot ( equiv-is-isometric-equiv-is-iso-short-function-Metric-Space A B) ∘e associative-Σ ( map-type-Metric-Space A B) ( is-short-function-Metric-Space A B) ( is-iso-Precategory precategory-short-function-Metric-Space {A} {B})
See also
Recent changes
- 2024-09-28. malarbol and Fredrik Bakke. Metric spaces (#1162).