The underlying additive complete metric abelian groups of real Banach spaces
Content created by Louis Wasserman.
Created on 2025-12-03.
Last modified on 2025-12-03.
module analysis.additive-complete-metric-abelian-groups-real-banach-spaces where
Imports
open import analysis.complete-metric-abelian-groups open import analysis.metric-abelian-groups open import analysis.metric-abelian-groups-normed-real-vector-spaces open import foundation.dependent-pair-types open import foundation.identity-types open import foundation.subtypes open import foundation.universe-levels open import linear-algebra.real-banach-spaces open import real-numbers.metric-additive-group-of-real-numbers
Idea
Every real Banach space forms a complete metric abelian group under addition.
Definition
module _ {l1 l2 : Level} (V : ℝ-Banach-Space l1 l2) where metric-ab-add-ℝ-Banach-Space : Metric-Ab l2 l1 metric-ab-add-ℝ-Banach-Space = metric-ab-Normed-ℝ-Vector-Space (normed-vector-space-ℝ-Banach-Space V) complete-metric-ab-add-ℝ-Banach-Space : Complete-Metric-Ab l2 l1 complete-metric-ab-add-ℝ-Banach-Space = ( metric-ab-add-ℝ-Banach-Space , is-complete-metric-space-ℝ-Banach-Space V)
Properties
The complete metric abelian group from the reals as a real Banach space equals the standard complete metric abelian group of the reals under addition
abstract eq-complete-metric-ab-ℝ : (l : Level) → complete-metric-ab-add-ℝ-Banach-Space (real-banach-space-ℝ l) = complete-metric-ab-add-ℝ l eq-complete-metric-ab-ℝ l = eq-type-subtype ( is-complete-prop-Metric-Ab) ( eq-metric-ab-normed-real-vector-space-metric-ab-ℝ l)
Recent changes
- 2025-12-03. Louis Wasserman. Series in Banach spaces (#1710).