Real Banach spaces
Content created by Louis Wasserman.
Created on 2025-11-26.
Last modified on 2025-11-26.
{-# OPTIONS --lossy-unification #-} module linear-algebra.real-banach-spaces where
Imports
open import foundation.dependent-pair-types open import foundation.propositions open import foundation.subtypes open import foundation.transport-along-identifications open import foundation.universe-levels open import linear-algebra.normed-real-vector-spaces open import metric-spaces.complete-metric-spaces open import real-numbers.cauchy-completeness-dedekind-real-numbers
Idea
A real Banach space¶ is a normed real vector space such that the metric space induced by the norm is complete.
Definition
is-banach-prop-Normed-ℝ-Vector-Space : {l1 l2 : Level} (V : Normed-ℝ-Vector-Space l1 l2) → Prop (l1 ⊔ l2) is-banach-prop-Normed-ℝ-Vector-Space V = is-complete-prop-Metric-Space (metric-space-Normed-ℝ-Vector-Space V) is-banach-Normed-ℝ-Vector-Space : {l1 l2 : Level} (V : Normed-ℝ-Vector-Space l1 l2) → UU (l1 ⊔ l2) is-banach-Normed-ℝ-Vector-Space V = type-Prop (is-banach-prop-Normed-ℝ-Vector-Space V) ℝ-Banach-Space : (l1 l2 : Level) → UU (lsuc l1 ⊔ lsuc l2) ℝ-Banach-Space l1 l2 = type-subtype (is-banach-prop-Normed-ℝ-Vector-Space {l1} {l2})
Properties
The real numbers are a real Banach space with norm x ↦ |x|
abstract is-banach-normed-real-vector-space-ℝ : (l : Level) → is-banach-Normed-ℝ-Vector-Space (normed-real-vector-space-ℝ l) is-banach-normed-real-vector-space-ℝ l = inv-tr ( is-complete-Metric-Space) ( eq-metric-space-normed-real-vector-space-metric-space-ℝ l) ( is-complete-metric-space-ℝ l) real-banach-space-ℝ : (l : Level) → ℝ-Banach-Space l (lsuc l) real-banach-space-ℝ l = ( normed-real-vector-space-ℝ l , is-banach-normed-real-vector-space-ℝ l)
External links
- Banach space at Wikidata
- Banach space on Wikipedia
Recent changes
- 2025-11-26. Louis Wasserman. Normed real vector spaces (#1704).