Real Banach spaces
Content created by Louis Wasserman.
Created on 2025-11-26.
Last modified on 2025-12-03.
{-# OPTIONS --lossy-unification #-} module linear-algebra.real-banach-spaces where
Imports
open import foundation.dependent-pair-types open import foundation.propositions open import foundation.subtypes open import foundation.transport-along-identifications open import foundation.universe-levels open import linear-algebra.normed-real-vector-spaces open import lists.sequences open import metric-spaces.cauchy-sequences-complete-metric-spaces open import metric-spaces.cauchy-sequences-metric-spaces open import metric-spaces.complete-metric-spaces open import metric-spaces.limits-of-sequences-metric-spaces open import metric-spaces.metric-spaces open import real-numbers.cauchy-completeness-dedekind-real-numbers open import real-numbers.dedekind-real-numbers
Idea
A real Banach space¶ is a normed real vector space such that the metric space induced by the norm is complete.
Definition
is-banach-prop-Normed-ℝ-Vector-Space : {l1 l2 : Level} (V : Normed-ℝ-Vector-Space l1 l2) → Prop (l1 ⊔ l2) is-banach-prop-Normed-ℝ-Vector-Space V = is-complete-prop-Metric-Space (metric-space-Normed-ℝ-Vector-Space V) is-banach-Normed-ℝ-Vector-Space : {l1 l2 : Level} (V : Normed-ℝ-Vector-Space l1 l2) → UU (l1 ⊔ l2) is-banach-Normed-ℝ-Vector-Space V = type-Prop (is-banach-prop-Normed-ℝ-Vector-Space V) ℝ-Banach-Space : (l1 l2 : Level) → UU (lsuc l1 ⊔ lsuc l2) ℝ-Banach-Space l1 l2 = type-subtype (is-banach-prop-Normed-ℝ-Vector-Space {l1} {l2}) module _ {l1 l2 : Level} (V : ℝ-Banach-Space l1 l2) where normed-vector-space-ℝ-Banach-Space : Normed-ℝ-Vector-Space l1 l2 normed-vector-space-ℝ-Banach-Space = pr1 V metric-space-ℝ-Banach-Space : Metric-Space l2 l1 metric-space-ℝ-Banach-Space = metric-space-Normed-ℝ-Vector-Space normed-vector-space-ℝ-Banach-Space is-complete-metric-space-ℝ-Banach-Space : is-complete-Metric-Space metric-space-ℝ-Banach-Space is-complete-metric-space-ℝ-Banach-Space = pr2 V complete-metric-space-ℝ-Banach-Space : Complete-Metric-Space l2 l1 complete-metric-space-ℝ-Banach-Space = ( metric-space-ℝ-Banach-Space , is-complete-metric-space-ℝ-Banach-Space) type-ℝ-Banach-Space : UU l2 type-ℝ-Banach-Space = type-Normed-ℝ-Vector-Space normed-vector-space-ℝ-Banach-Space map-norm-ℝ-Banach-Space : type-ℝ-Banach-Space → ℝ l1 map-norm-ℝ-Banach-Space = map-norm-Normed-ℝ-Vector-Space normed-vector-space-ℝ-Banach-Space cauchy-sequence-ℝ-Banach-Space : UU (l1 ⊔ l2) cauchy-sequence-ℝ-Banach-Space = cauchy-sequence-Metric-Space metric-space-ℝ-Banach-Space is-cauchy-sequence-ℝ-Banach-Space : sequence type-ℝ-Banach-Space → UU l1 is-cauchy-sequence-ℝ-Banach-Space = is-cauchy-sequence-Metric-Space metric-space-ℝ-Banach-Space map-cauchy-sequence-ℝ-Banach-Space : cauchy-sequence-ℝ-Banach-Space → sequence type-ℝ-Banach-Space map-cauchy-sequence-ℝ-Banach-Space = pr1 has-limit-sequence-ℝ-Banach-Space : sequence type-ℝ-Banach-Space → UU (l1 ⊔ l2) has-limit-sequence-ℝ-Banach-Space = has-limit-sequence-Metric-Space metric-space-ℝ-Banach-Space has-limit-cauchy-sequence-ℝ-Banach-Space : (σ : cauchy-sequence-ℝ-Banach-Space) → has-limit-sequence-ℝ-Banach-Space (map-cauchy-sequence-ℝ-Banach-Space σ) has-limit-cauchy-sequence-ℝ-Banach-Space = has-limit-cauchy-sequence-Complete-Metric-Space ( complete-metric-space-ℝ-Banach-Space)
Properties
The real numbers are a real Banach space with norm x ↦ |x|
abstract is-banach-normed-real-vector-space-ℝ : (l : Level) → is-banach-Normed-ℝ-Vector-Space (normed-real-vector-space-ℝ l) is-banach-normed-real-vector-space-ℝ l = inv-tr ( is-complete-Metric-Space) ( eq-metric-space-normed-real-vector-space-metric-space-ℝ l) ( is-complete-metric-space-ℝ l) real-banach-space-ℝ : (l : Level) → ℝ-Banach-Space l (lsuc l) real-banach-space-ℝ l = ( normed-real-vector-space-ℝ l , is-banach-normed-real-vector-space-ℝ l)
External links
- Banach space at Wikidata
- Banach space on Wikipedia
Recent changes
- 2025-12-03. Louis Wasserman. Series in Banach spaces (#1710).
- 2025-11-26. Louis Wasserman. Normed real vector spaces (#1704).