Absolute convergence of series in real Banach spaces
Content created by Louis Wasserman.
Created on 2025-12-25.
Last modified on 2025-12-25.
module analysis.absolute-convergence-series-real-banach-spaces where
Imports
open import analysis.convergent-series-real-banach-spaces open import analysis.convergent-series-real-numbers open import analysis.series-real-banach-spaces open import analysis.series-real-numbers open import elementary-number-theory.addition-natural-numbers open import elementary-number-theory.inequality-natural-numbers open import elementary-number-theory.natural-numbers open import elementary-number-theory.positive-rational-numbers open import foundation.action-on-identifications-functions open import foundation.coproduct-types open import foundation.dependent-pair-types open import foundation.function-types open import foundation.identity-types open import foundation.propositional-truncations open import foundation.propositions open import foundation.transport-along-identifications open import foundation.universe-levels open import linear-algebra.real-banach-spaces open import linear-algebra.sums-of-finite-sequences-of-elements-real-banach-spaces open import metric-spaces.cauchy-sequences-metric-spaces open import order-theory.large-posets open import real-numbers.cauchy-sequences-real-numbers open import real-numbers.difference-real-numbers open import real-numbers.distance-real-numbers open import real-numbers.inequality-real-numbers open import real-numbers.rational-real-numbers
Idea
A series Σ aₙ in a
real Banach space is said to
absolutely converge¶
if the series of norms Σ ∥aₙ∥ is a
convergent series of
real numbers.
Definition
module _ {l1 l2 : Level} (V : ℝ-Banach-Space l1 l2) (σ : series-ℝ-Banach-Space V) where is-absolutely-convergent-prop-series-ℝ-Banach-Space : Prop (lsuc l1) is-absolutely-convergent-prop-series-ℝ-Banach-Space = is-convergent-prop-series-ℝ (map-norm-series-ℝ-Banach-Space V σ) is-absolutely-convergent-series-ℝ-Banach-Space : UU (lsuc l1) is-absolutely-convergent-series-ℝ-Banach-Space = type-Prop is-absolutely-convergent-prop-series-ℝ-Banach-Space
Properties
Given a Cauchy modulus for the sequence of partial sums of norms of terms in a series, there is a Cauchy modulus of the series
module _ {l1 l2 : Level} (V : ℝ-Banach-Space l1 l2) (σ : series-ℝ-Banach-Space V) (M : is-cauchy-sequence-ℝ ( partial-sum-series-ℝ (map-norm-series-ℝ-Banach-Space V σ))) where abstract neighborhood-add-cauchy-modulus-partial-sum-norm-series-ℝ-Banach-Space : (ε : ℚ⁺) (k : ℕ) → neighborhood-ℝ-Banach-Space ( V) ( ε) ( partial-sum-series-ℝ-Banach-Space V σ (pr1 (M ε))) ( partial-sum-series-ℝ-Banach-Space V σ (pr1 (M ε) +ℕ k)) neighborhood-add-cauchy-modulus-partial-sum-norm-series-ℝ-Banach-Space ε k = let open inequality-reasoning-Large-Poset ℝ-Large-Poset με = pr1 (M ε) in chain-of-inequalities dist-ℝ-Banach-Space V ( partial-sum-series-ℝ-Banach-Space V σ με) ( partial-sum-series-ℝ-Banach-Space V σ (με +ℕ k)) ≤ dist-ℝ-Banach-Space V ( partial-sum-series-ℝ-Banach-Space V σ (με +ℕ k)) ( partial-sum-series-ℝ-Banach-Space V σ με) by leq-eq-ℝ (symmetric-dist-ℝ-Banach-Space V _ _) ≤ map-norm-ℝ-Banach-Space V ( partial-sum-series-ℝ-Banach-Space V ( drop-series-ℝ-Banach-Space V με σ) k) by leq-eq-ℝ ( ap ( map-norm-ℝ-Banach-Space V) ( inv ( partial-sum-drop-series-ℝ-Banach-Space V με σ k))) ≤ partial-sum-series-ℝ ( map-norm-series-ℝ-Banach-Space ( V) ( drop-series-ℝ-Banach-Space V με σ)) ( k) by triangle-inequality-norm-sum-fin-sequence-type-ℝ-Banach-Space V k _ ≤ ( partial-sum-series-ℝ ( map-norm-series-ℝ-Banach-Space V σ) ( με +ℕ k)) -ℝ ( partial-sum-series-ℝ ( map-norm-series-ℝ-Banach-Space V σ) ( με)) by leq-eq-ℝ ( partial-sum-drop-series-ℝ ( με) ( map-norm-series-ℝ-Banach-Space V σ) ( k)) ≤ dist-ℝ ( partial-sum-series-ℝ ( map-norm-series-ℝ-Banach-Space V σ) ( με +ℕ k)) ( partial-sum-series-ℝ ( map-norm-series-ℝ-Banach-Space V σ) ( με)) by leq-diff-dist-ℝ _ _ ≤ real-ℚ⁺ ε by leq-dist-neighborhood-ℝ ( ε) ( _) ( _) ( pr2 (M ε) _ _ (leq-add-ℕ με k) (refl-leq-ℕ με)) is-cauchy-partial-sum-is-cauchy-partial-sum-norm-series-ℝ-Banach-Space : is-cauchy-sequence-Metric-Space ( metric-space-ℝ-Banach-Space V) ( partial-sum-series-ℝ-Banach-Space V σ) is-cauchy-partial-sum-is-cauchy-partial-sum-norm-series-ℝ-Banach-Space = is-cauchy-sequence-modulus-neighborhood-add-sequence-Metric-Space ( metric-space-ℝ-Banach-Space V) ( partial-sum-series-ℝ-Banach-Space V σ) ( pr1 ∘ M) ( neighborhood-add-cauchy-modulus-partial-sum-norm-series-ℝ-Banach-Space)
If a series is absolutely convergent, it is convergent
module _ {l1 l2 : Level} (V : ℝ-Banach-Space l1 l2) (σ : series-ℝ-Banach-Space V) where is-convergent-is-absolutely-convergent-series-ℝ-Banach-Space : is-absolutely-convergent-series-ℝ-Banach-Space V σ → is-convergent-series-ℝ-Banach-Space V σ is-convergent-is-absolutely-convergent-series-ℝ-Banach-Space (lim-Σnorm , H) = let open do-syntax-trunc-Prop ( is-convergent-prop-series-ℝ-Banach-Space V σ) in do cauchy-mod ← exists-cauchy-modulus-has-limit-sequence-ℝ ( partial-sum-series-ℝ (map-norm-series-ℝ-Banach-Space V σ)) ( lim-Σnorm , H) is-convergent-is-cauchy-sequence-partial-sum-series-ℝ-Banach-Space ( V) ( σ) ( is-cauchy-partial-sum-is-cauchy-partial-sum-norm-series-ℝ-Banach-Space ( V) ( σ) ( cauchy-mod))
See also
External links
- Absolute convergence at Wikidata
- Absolute convergence of series in Banach spaces on Wikipedia
Recent changes
- 2025-12-25. Louis Wasserman. The absolute convergence test in real Banach spaces (#1714).