Absolute convergence of series in real Banach spaces

Content created by Louis Wasserman.

Created on 2025-12-25.
Last modified on 2025-12-25.

module analysis.absolute-convergence-series-real-banach-spaces where
Imports
open import analysis.convergent-series-real-banach-spaces
open import analysis.convergent-series-real-numbers
open import analysis.series-real-banach-spaces
open import analysis.series-real-numbers

open import elementary-number-theory.addition-natural-numbers
open import elementary-number-theory.inequality-natural-numbers
open import elementary-number-theory.natural-numbers
open import elementary-number-theory.positive-rational-numbers

open import foundation.action-on-identifications-functions
open import foundation.coproduct-types
open import foundation.dependent-pair-types
open import foundation.function-types
open import foundation.identity-types
open import foundation.propositional-truncations
open import foundation.propositions
open import foundation.transport-along-identifications
open import foundation.universe-levels

open import linear-algebra.real-banach-spaces
open import linear-algebra.sums-of-finite-sequences-of-elements-real-banach-spaces

open import metric-spaces.cauchy-sequences-metric-spaces

open import order-theory.large-posets

open import real-numbers.cauchy-sequences-real-numbers
open import real-numbers.difference-real-numbers
open import real-numbers.distance-real-numbers
open import real-numbers.inequality-real-numbers
open import real-numbers.rational-real-numbers

Idea

A series Σ aₙ in a real Banach space is said to absolutely converge if the series of norms Σ ∥aₙ∥ is a convergent series of real numbers.

Definition

module _
  {l1 l2 : Level}
  (V : ℝ-Banach-Space l1 l2)
  (σ : series-ℝ-Banach-Space V)
  where

  is-absolutely-convergent-prop-series-ℝ-Banach-Space : Prop (lsuc l1)
  is-absolutely-convergent-prop-series-ℝ-Banach-Space =
    is-convergent-prop-series-ℝ (map-norm-series-ℝ-Banach-Space V σ)

  is-absolutely-convergent-series-ℝ-Banach-Space : UU (lsuc l1)
  is-absolutely-convergent-series-ℝ-Banach-Space =
    type-Prop is-absolutely-convergent-prop-series-ℝ-Banach-Space

Properties

Given a Cauchy modulus for the sequence of partial sums of norms of terms in a series, there is a Cauchy modulus of the series

module _
  {l1 l2 : Level}
  (V : ℝ-Banach-Space l1 l2)
  (σ : series-ℝ-Banach-Space V)
  (M :
    is-cauchy-sequence-ℝ
      ( partial-sum-series-ℝ (map-norm-series-ℝ-Banach-Space V σ)))
  where

  abstract
    neighborhood-add-cauchy-modulus-partial-sum-norm-series-ℝ-Banach-Space :
      (ε : ℚ⁺) (k : ) 
      neighborhood-ℝ-Banach-Space
        ( V)
        ( ε)
        ( partial-sum-series-ℝ-Banach-Space V σ (pr1 (M ε)))
        ( partial-sum-series-ℝ-Banach-Space V σ (pr1 (M ε) +ℕ k))
    neighborhood-add-cauchy-modulus-partial-sum-norm-series-ℝ-Banach-Space
      ε k =
      let
        open inequality-reasoning-Large-Poset ℝ-Large-Poset
        με = pr1 (M ε)
      in
        chain-of-inequalities
        dist-ℝ-Banach-Space V
          ( partial-sum-series-ℝ-Banach-Space V σ με)
          ( partial-sum-series-ℝ-Banach-Space V σ (με +ℕ k))
         dist-ℝ-Banach-Space V
            ( partial-sum-series-ℝ-Banach-Space V σ (με +ℕ k))
            ( partial-sum-series-ℝ-Banach-Space V σ με)
          by leq-eq-ℝ (symmetric-dist-ℝ-Banach-Space V _ _)
         map-norm-ℝ-Banach-Space V
            ( partial-sum-series-ℝ-Banach-Space V
              ( drop-series-ℝ-Banach-Space V με σ) k)
          by
            leq-eq-ℝ
              ( ap
                ( map-norm-ℝ-Banach-Space V)
                ( inv
                  ( partial-sum-drop-series-ℝ-Banach-Space V με σ k)))
         partial-sum-series-ℝ
            ( map-norm-series-ℝ-Banach-Space
              ( V)
              ( drop-series-ℝ-Banach-Space V με σ))
            ( k)
          by triangle-inequality-norm-sum-fin-sequence-type-ℝ-Banach-Space V k _
         ( partial-sum-series-ℝ
            ( map-norm-series-ℝ-Banach-Space V σ)
            ( με +ℕ k)) -ℝ
          ( partial-sum-series-ℝ
            ( map-norm-series-ℝ-Banach-Space V σ)
            ( με))
          by
            leq-eq-ℝ
              ( partial-sum-drop-series-ℝ
                ( με)
                ( map-norm-series-ℝ-Banach-Space V σ)
                ( k))
         dist-ℝ
            ( partial-sum-series-ℝ
              ( map-norm-series-ℝ-Banach-Space V σ)
              ( με +ℕ k))
            ( partial-sum-series-ℝ
              ( map-norm-series-ℝ-Banach-Space V σ)
              ( με))
          by leq-diff-dist-ℝ _ _
         real-ℚ⁺ ε
          by
            leq-dist-neighborhood-ℝ
              ( ε)
              ( _)
              ( _)
              ( pr2 (M ε) _ _ (leq-add-ℕ με k) (refl-leq-ℕ με))

    is-cauchy-partial-sum-is-cauchy-partial-sum-norm-series-ℝ-Banach-Space :
      is-cauchy-sequence-Metric-Space
        ( metric-space-ℝ-Banach-Space V)
        ( partial-sum-series-ℝ-Banach-Space V σ)
    is-cauchy-partial-sum-is-cauchy-partial-sum-norm-series-ℝ-Banach-Space =
      is-cauchy-sequence-modulus-neighborhood-add-sequence-Metric-Space
        ( metric-space-ℝ-Banach-Space V)
        ( partial-sum-series-ℝ-Banach-Space V σ)
        ( pr1  M)
        ( neighborhood-add-cauchy-modulus-partial-sum-norm-series-ℝ-Banach-Space)

If a series is absolutely convergent, it is convergent

module _
  {l1 l2 : Level}
  (V : ℝ-Banach-Space l1 l2)
  (σ : series-ℝ-Banach-Space V)
  where

  is-convergent-is-absolutely-convergent-series-ℝ-Banach-Space :
    is-absolutely-convergent-series-ℝ-Banach-Space V σ 
    is-convergent-series-ℝ-Banach-Space V σ
  is-convergent-is-absolutely-convergent-series-ℝ-Banach-Space (lim-Σnorm , H) =
    let
      open
        do-syntax-trunc-Prop
          ( is-convergent-prop-series-ℝ-Banach-Space V σ)
    in do
      cauchy-mod 
        exists-cauchy-modulus-has-limit-sequence-ℝ
          ( partial-sum-series-ℝ (map-norm-series-ℝ-Banach-Space V σ))
          ( lim-Σnorm , H)
      is-convergent-is-cauchy-sequence-partial-sum-series-ℝ-Banach-Space
        ( V)
        ( σ)
        ( is-cauchy-partial-sum-is-cauchy-partial-sum-norm-series-ℝ-Banach-Space
          ( V)
          ( σ)
          ( cauchy-mod))

See also

Recent changes