Sums of finite sequences of elements in real Banach spaces
Content created by Louis Wasserman.
Created on 2025-12-25.
Last modified on 2025-12-25.
module linear-algebra.sums-of-finite-sequences-of-elements-real-banach-spaces where
Imports
open import elementary-number-theory.natural-numbers open import foundation.function-types open import foundation.universe-levels open import linear-algebra.real-banach-spaces open import linear-algebra.sums-of-finite-sequences-of-elements-normed-real-vector-spaces open import lists.finite-sequences open import real-numbers.inequality-real-numbers open import real-numbers.sums-of-finite-sequences-of-real-numbers
Idea
The sum¶ of a finite sequence of elements of a real Banach space is the sum of the sequence in the abelian group of the space under addition.
Definition
sum-fin-sequence-type-ℝ-Banach-Space : {l1 l2 : Level} (V : ℝ-Banach-Space l1 l2) → (n : ℕ) → fin-sequence (type-ℝ-Banach-Space V) n → type-ℝ-Banach-Space V sum-fin-sequence-type-ℝ-Banach-Space V = sum-fin-sequence-type-Normed-ℝ-Vector-Space ( normed-vector-space-ℝ-Banach-Space V)
Properties
The norm of the sum of a finite sequence is at most the sum of the norms of the terms of the sequence
module _ {l1 l2 : Level} (V : ℝ-Banach-Space l1 l2) where abstract triangle-inequality-norm-sum-fin-sequence-type-ℝ-Banach-Space : (n : ℕ) (σ : fin-sequence (type-ℝ-Banach-Space V) n) → leq-ℝ ( map-norm-ℝ-Banach-Space V ( sum-fin-sequence-type-ℝ-Banach-Space V n σ)) ( sum-fin-sequence-ℝ n (map-norm-ℝ-Banach-Space V ∘ σ)) triangle-inequality-norm-sum-fin-sequence-type-ℝ-Banach-Space = triangle-inequality-norm-sum-fin-sequence-type-Normed-ℝ-Vector-Space ( normed-vector-space-ℝ-Banach-Space V)
Recent changes
- 2025-12-25. Louis Wasserman. The absolute convergence test in real Banach spaces (#1714).