Real Hilbert spaces
Content created by Louis Wasserman.
Created on 2025-12-03.
Last modified on 2025-12-03.
{-# OPTIONS --lossy-unification #-} module linear-algebra.real-hilbert-spaces where
Imports
open import foundation.dependent-pair-types open import foundation.propositions open import foundation.subtypes open import foundation.transport-along-identifications open import foundation.universe-levels open import linear-algebra.normed-real-vector-spaces open import linear-algebra.real-banach-spaces open import linear-algebra.real-inner-product-spaces open import linear-algebra.real-inner-product-spaces-are-normed open import metric-spaces.complete-metric-spaces open import metric-spaces.metric-spaces open import real-numbers.cauchy-completeness-dedekind-real-numbers
Idea
A real Hilbert space¶ is a real inner product space for which the metric space induced by the inner product is complete.
Definition
module _ {l1 l2 : Level} (V : ℝ-Inner-Product-Space l1 l2) where is-complete-prop-ℝ-Inner-Product-Space : Prop (l1 ⊔ l2) is-complete-prop-ℝ-Inner-Product-Space = is-complete-prop-Metric-Space ( metric-space-ℝ-Inner-Product-Space V) is-complete-ℝ-Inner-Product-Space : UU (l1 ⊔ l2) is-complete-ℝ-Inner-Product-Space = type-Prop is-complete-prop-ℝ-Inner-Product-Space ℝ-Hilbert-Space : (l1 l2 : Level) → UU (lsuc l1 ⊔ lsuc l2) ℝ-Hilbert-Space l1 l2 = type-subtype (is-complete-prop-ℝ-Inner-Product-Space {l1} {l2})
Properties
Every real Hilbert space is a real Banach space
module _ {l1 l2 : Level} (V : ℝ-Hilbert-Space l1 l2) where inner-product-space-ℝ-Hilbert-Space : ℝ-Inner-Product-Space l1 l2 inner-product-space-ℝ-Hilbert-Space = pr1 V normed-vector-space-ℝ-Hilbert-Space : Normed-ℝ-Vector-Space l1 l2 normed-vector-space-ℝ-Hilbert-Space = normed-vector-space-ℝ-Inner-Product-Space ( inner-product-space-ℝ-Hilbert-Space) banach-space-ℝ-Hilbert-Space : ℝ-Banach-Space l1 l2 banach-space-ℝ-Hilbert-Space = ( normed-vector-space-ℝ-Hilbert-Space , pr2 V)
The real numbers are a real Hilbert space with multiplication as the inner product
abstract is-complete-real-inner-product-space-ℝ : (l : Level) → is-complete-ℝ-Inner-Product-Space (real-inner-product-space-ℝ l) is-complete-real-inner-product-space-ℝ l = inv-tr ( is-complete-Metric-Space) ( eq-metric-space-real-inner-product-space-ℝ l) ( is-complete-metric-space-ℝ l) real-hilbert-space-ℝ : (l : Level) → ℝ-Hilbert-Space l (lsuc l) real-hilbert-space-ℝ l = ( real-inner-product-space-ℝ l , is-complete-real-inner-product-space-ℝ l)
See also
External links
- Hilbert space at Wikidata
- Hilbert space on Wikipedia
- Hilbert space on Lab
Recent changes
- 2025-12-03. Louis Wasserman. Hilbert spaces (#1713).