The metric abelian group of real numbers
Content created by Louis Wasserman.
Created on 2025-11-10.
Last modified on 2025-11-10.
{-# OPTIONS --lossy-unification #-} module real-numbers.metric-abelian-group-of-real-numbers where
Imports
open import analysis.metric-abelian-groups open import foundation.dependent-pair-types open import foundation.universe-levels open import metric-spaces.pseudometric-spaces open import real-numbers.isometry-addition-real-numbers open import real-numbers.isometry-negation-real-numbers open import real-numbers.large-additive-group-of-real-numbers open import real-numbers.metric-space-of-real-numbers
Idea
The Dedekind real numbers form a metric abelian group under addition with regards to their standard metric space.
Definition
metric-ab-ℝ : (l : Level) → Metric-Ab (lsuc l) l metric-ab-ℝ l = ( ab-add-ℝ l , structure-Pseudometric-Space (pseudometric-space-ℝ l) , is-extensional-pseudometric-space-ℝ , is-isometry-neg-ℝ , is-isometry-left-add-ℝ)
Recent changes
- 2025-11-10. Louis Wasserman. The sum of geometric series in the real numbers (#1676).