Convergent series of real numbers
Content created by Louis Wasserman.
Created on 2025-11-10.
Last modified on 2025-11-10.
{-# OPTIONS --lossy-unification #-} module real-numbers.convergent-series-real-numbers where
Imports
open import analysis.convergent-series-metric-abelian-groups open import foundation.propositions open import foundation.universe-levels open import real-numbers.dedekind-real-numbers open import real-numbers.series-real-numbers
Idea
A series of
real numbers
converges¶
to x if the sequence of its partial sums
converges to x in the
standard metric space of real numbers.
Definition
is-sum-prop-series-ℝ : {l : Level} → series-ℝ l → ℝ l → Prop l is-sum-prop-series-ℝ = is-sum-prop-series-Metric-Ab is-sum-series-ℝ : {l : Level} → series-ℝ l → ℝ l → UU l is-sum-series-ℝ = is-sum-series-Metric-Ab
Recent changes
- 2025-11-10. Louis Wasserman. The sum of geometric series in the real numbers (#1676).