The additive group of complex numbers
Content created by Louis Wasserman.
Created on 2025-10-11.
Last modified on 2025-10-11.
module complex-numbers.additive-group-of-complex-numbers where
Imports
open import complex-numbers.addition-complex-numbers open import complex-numbers.complex-numbers open import complex-numbers.similarity-complex-numbers open import foundation.dependent-pair-types open import foundation.function-types open import foundation.universe-levels open import group-theory.abelian-groups open import group-theory.groups open import group-theory.monoids open import group-theory.semigroups
Idea
The type of complex numbers equipped with
addition is a
commutative group with unit zero-ℂ
and
inverse given by neg-ℂ
.
Definition
semigroup-add-ℂ-lzero : Semigroup (lsuc lzero) semigroup-add-ℂ-lzero = ( ℂ-Set lzero , add-ℂ , associative-add-ℂ) group-add-ℂ-lzero : Group (lsuc lzero) group-add-ℂ-lzero = ( semigroup-add-ℂ-lzero , ( zero-ℂ , left-unit-law-add-ℂ , right-unit-law-add-ℂ) , neg-ℂ , eq-sim-ℂ ∘ left-inverse-law-add-ℂ , eq-sim-ℂ ∘ right-inverse-law-add-ℂ) ab-add-ℂ-lzero : Ab (lsuc lzero) ab-add-ℂ-lzero = ( group-add-ℂ-lzero , commutative-add-ℂ)
Recent changes
- 2025-10-11. Louis Wasserman. Complex numbers (#1573).