The ring of complex numbers
Content created by Louis Wasserman.
Created on 2025-10-11.
Last modified on 2025-10-11.
module complex-numbers.ring-of-complex-numbers where
Imports
open import commutative-algebra.commutative-rings open import complex-numbers.additive-group-of-complex-numbers open import complex-numbers.complex-numbers open import complex-numbers.multiplication-complex-numbers open import foundation.dependent-pair-types open import foundation.function-types open import foundation.universe-levels open import ring-theory.rings
Idea
The type of complex numbers equipped with multiplication and addition is a commutative ring.
Definition
ring-ℂ-lzero : Ring (lsuc lzero) ring-ℂ-lzero = ( ab-add-ℂ-lzero , ( mul-ℂ , associative-mul-ℂ) , ( one-ℂ , left-unit-law-mul-ℂ , right-unit-law-mul-ℂ) , left-distributive-mul-add-ℂ , right-distributive-mul-add-ℂ) commutative-ring-ℂ-lzero : Commutative-Ring (lsuc lzero) commutative-ring-ℂ-lzero = ( ring-ℂ-lzero , commutative-mul-ℂ)
Recent changes
- 2025-10-11. Louis Wasserman. Complex numbers (#1573).