The precategory of algebras of an equational theory
Content created by Garrett Figueroa.
Created on 2025-09-05.
Last modified on 2025-09-05.
module universal-algebra.precategory-of-algebras-of-theories where
Imports
open import category-theory.large-precategories open import foundation.dependent-pair-types open import foundation.sets open import foundation.universe-levels open import foundation-core.identity-types open import universal-algebra.algebraic-theories open import universal-algebra.algebras-of-theories open import universal-algebra.homomorphisms-of-algebras open import universal-algebra.models-of-signatures open import universal-algebra.signatures
Idea
For any signature σ
and
σ
-theory T
, there is a
large precategory of
T
-algebras and T
-algebra
homomorphisms.
Definition
module _ {l1 l2 : Level} (σ : signature l1) (T : Theory σ l2) where Algebra-Large-Precategory : Large-Precategory (λ l → l1 ⊔ l2 ⊔ lsuc l) (λ l3 l4 → l1 ⊔ l3 ⊔ l4) Algebra-Large-Precategory = make-Large-Precategory ( Algebra σ T) ( set-hom-Algebra σ T) ( λ {l3} {l4} {l5} {X} {Y} {Z} → comp-hom-Algebra σ T X Y Z) ( λ {l} {X} → id-hom-Algebra σ T X) ( λ {l3} {l4} {l5} {l6} {X} {Y} {Z} {W} → associative-comp-hom-Algebra σ T X Y Z W) ( λ {l3} {l4} {X} {Y} → left-unit-law-comp-hom-Algebra σ T X Y) ( λ {l3} {l4} {X} {Y} → right-unit-law-comp-hom-Algebra σ T X Y)
Recent changes
- 2025-09-05. Garrett Figueroa. Category of algebras of a theory (#1483).