The category of algebras of theories
Content created by Garrett Figueroa.
Created on 2025-09-05.
Last modified on 2025-09-05.
{-# OPTIONS --lossy-unification #-} module universal-algebra.category-of-algebras-of-theories where
Imports
open import category-theory.isomorphisms-in-large-precategories open import category-theory.large-categories open import category-theory.large-precategories open import foundation.dependent-pair-types open import foundation.sets open import foundation.subtype-identity-principle open import foundation.universe-levels open import foundation-core.equality-dependent-pair-types open import foundation-core.equivalences open import foundation-core.function-types open import foundation-core.identity-types open import universal-algebra.algebraic-theories open import universal-algebra.algebras-of-theories open import universal-algebra.homomorphisms-of-algebras open import universal-algebra.isomorphisms-of-algebras open import universal-algebra.models-of-signatures open import universal-algebra.precategory-of-algebras-of-theories open import universal-algebra.signatures
Idea
The precategory of algebras of a theory is a category.
Definition
module _ {l1 l2 : Level} (σ : signature l1) (T : Theory σ l2) where is-large-category-Algebra-Large-Precategory : is-large-category-Large-Precategory (Algebra-Large-Precategory σ T) is-large-category-Algebra-Large-Precategory = is-equiv-iso-eq-Algebra σ T Algebra-Large-Category : Large-Category (λ l → l1 ⊔ l2 ⊔ lsuc l) (λ l3 → _⊔_ (l1 ⊔ l3)) large-precategory-Large-Category Algebra-Large-Category = Algebra-Large-Precategory σ T is-large-category-Large-Category Algebra-Large-Category = is-large-category-Algebra-Large-Precategory
Recent changes
- 2025-09-05. Garrett Figueroa. Category of algebras of a theory (#1483).