Symmetric premetric structures on types
Content created by Fredrik Bakke and malarbol.
Created on 2024-09-28.
Last modified on 2024-09-28.
module metric-spaces.symmetric-premetric-structures where
Imports
open import elementary-number-theory.positive-rational-numbers open import foundation.binary-relations open import foundation.existential-quantification open import foundation.function-types open import foundation.identity-types open import foundation.propositions open import foundation.universe-levels open import metric-spaces.premetric-structures
Idea
A premetric is
symmetric¶
if d
-neighborhoods are symmetric for all
positive rational numbers
d
. I.e., upper bounds on the distance between two elements x
and y
in a
symmetric premetric are also upper bounds on the distance between y
and x
.
Definitions
The property of being a symmetric premetric structure
module _ {l1 l2 : Level} {A : UU l1} (B : Premetric l2 A) where is-symmetric-prop-Premetric : Prop (l1 ⊔ l2) is-symmetric-prop-Premetric = Π-Prop ℚ⁺ (is-symmetric-prop-Relation-Prop ∘ B) is-symmetric-Premetric : UU (l1 ⊔ l2) is-symmetric-Premetric = type-Prop is-symmetric-prop-Premetric is-prop-is-symmetric-Premetric : is-prop is-symmetric-Premetric is-prop-is-symmetric-Premetric = is-prop-type-Prop is-symmetric-prop-Premetric
Properties
Indistiguishability in a symmetric premetric is symmetric
module _ {l1 l2 : Level} {A : UU l1} (B : Premetric l2 A) (S : is-symmetric-Premetric B) where is-symmetric-is-indistinguishable-is-symmetric-Premetric : is-symmetric (is-indistinguishable-Premetric B) is-symmetric-is-indistinguishable-is-symmetric-Premetric x y H d = S d x y (H d)
The separatedness relation in a symmetric premetric is symmetric
module _ {l1 l2 : Level} {A : UU l1} (B : Premetric l2 A) (S : is-symmetric-Premetric B) where is-symmetric-is-separated-pt-is-symmetric-Premetric : is-symmetric (is-separated-pt-Premetric B) is-symmetric-is-separated-pt-is-symmetric-Premetric x y = elim-exists ( is-separated-pt-prop-Premetric B y x) ( λ d I → intro-exists d (I ∘ S d y x))
Recent changes
- 2024-09-28. malarbol and Fredrik Bakke. Metric spaces (#1162).