Reflexive premetric structures on types
Content created by Fredrik Bakke and malarbol.
Created on 2024-09-28.
Last modified on 2024-09-28.
module metric-spaces.reflexive-premetric-structures where
Imports
open import elementary-number-theory.positive-rational-numbers open import foundation.binary-relations open import foundation.dependent-pair-types open import foundation.empty-types open import foundation.equivalences open import foundation.existential-quantification open import foundation.function-types open import foundation.identity-types open import foundation.logical-equivalences open import foundation.negation open import foundation.propositions open import foundation.subtypes open import foundation.universe-levels open import metric-spaces.premetric-structures
Idea
A premetric structure is reflexive¶ if any element is indistinguishable from itself. I.e., a premetric structure is reflexive if all positive rational numbers are upper bounds of the distance between an element and itself.
Definitions
The property of being a reflexive premetric structure
module _ {l1 l2 : Level} {A : UU l1} (B : Premetric l2 A) where is-reflexive-prop-Premetric : Prop (l1 ⊔ l2) is-reflexive-prop-Premetric = Π-Prop ℚ⁺ (is-reflexive-prop-Relation-Prop ∘ B) is-reflexive-Premetric : UU (l1 ⊔ l2) is-reflexive-Premetric = type-Prop is-reflexive-prop-Premetric is-prop-is-reflexive-Premetric : is-prop is-reflexive-Premetric is-prop-is-reflexive-Premetric = is-prop-type-Prop is-reflexive-prop-Premetric
Properties
Indistinguishability in a reflexive premetric is reflexive
module _ {l1 l2 : Level} {A : UU l1} (B : Premetric l2 A) (R : is-reflexive-Premetric B) where is-reflexive-is-indistinguishable-reflexive-Premetric : is-reflexive (is-indistinguishable-Premetric B) is-reflexive-is-indistinguishable-reflexive-Premetric x d = R d x
In a reflexive premetric, equal elements are indistinguishable
module _ {l1 l2 : Level} {A : UU l1} (B : Premetric l2 A) (H : is-reflexive-Premetric B) where indistinguishable-eq-reflexive-Premetric : {x y : A} → x = y → is-indistinguishable-Premetric B x y indistinguishable-eq-reflexive-Premetric {x} {.x} refl d = H d x
Being separated in a reflexive premetric is irreflexive
module _ {l1 l2 : Level} {A : UU l1} (B : Premetric l2 A) (R : is-reflexive-Premetric B) where is-irreflexive-is-separated-pt-is-reflexive-Premetric : (x : A) → ¬ (is-separated-pt-Premetric B x x) is-irreflexive-is-separated-pt-is-reflexive-Premetric x = elim-exists ( empty-Prop) ( λ d H → H (R d x))
Recent changes
- 2024-09-28. malarbol and Fredrik Bakke. Metric spaces (#1162).