Reflexive premetric structures on types

Content created by Fredrik Bakke and malarbol.

Created on 2024-09-28.
Last modified on 2024-09-28.

module metric-spaces.reflexive-premetric-structures where
Imports
open import elementary-number-theory.positive-rational-numbers

open import foundation.binary-relations
open import foundation.dependent-pair-types
open import foundation.empty-types
open import foundation.equivalences
open import foundation.existential-quantification
open import foundation.function-types
open import foundation.identity-types
open import foundation.logical-equivalences
open import foundation.negation
open import foundation.propositions
open import foundation.subtypes
open import foundation.universe-levels

open import metric-spaces.premetric-structures

Idea

A premetric structure is reflexive if any element is indistinguishable from itself. I.e., a premetric structure is reflexive if all positive rational numbers are upper bounds of the distance between an element and itself.

Definitions

The property of being a reflexive premetric structure

module _
  {l1 l2 : Level} {A : UU l1} (B : Premetric l2 A)
  where

  is-reflexive-prop-Premetric : Prop (l1  l2)
  is-reflexive-prop-Premetric =
    Π-Prop ℚ⁺ (is-reflexive-prop-Relation-Prop  B)

  is-reflexive-Premetric : UU (l1  l2)
  is-reflexive-Premetric = type-Prop is-reflexive-prop-Premetric

  is-prop-is-reflexive-Premetric : is-prop is-reflexive-Premetric
  is-prop-is-reflexive-Premetric =
    is-prop-type-Prop is-reflexive-prop-Premetric

Properties

Indistinguishability in a reflexive premetric is reflexive

module _
  {l1 l2 : Level} {A : UU l1} (B : Premetric l2 A)
  (R : is-reflexive-Premetric B)
  where

  is-reflexive-is-indistinguishable-reflexive-Premetric :
    is-reflexive (is-indistinguishable-Premetric B)
  is-reflexive-is-indistinguishable-reflexive-Premetric x d = R d x

In a reflexive premetric, equal elements are indistinguishable

module _
  {l1 l2 : Level} {A : UU l1} (B : Premetric l2 A)
  (H : is-reflexive-Premetric B)
  where

  indistinguishable-eq-reflexive-Premetric :
    {x y : A}  x  y  is-indistinguishable-Premetric B x y
  indistinguishable-eq-reflexive-Premetric {x} {.x} refl d = H d x

Being separated in a reflexive premetric is irreflexive

module _
  {l1 l2 : Level} {A : UU l1} (B : Premetric l2 A)
  (R : is-reflexive-Premetric B)
  where

  is-irreflexive-is-separated-pt-is-reflexive-Premetric :
    (x : A)  ¬ (is-separated-pt-Premetric B x x)
  is-irreflexive-is-separated-pt-is-reflexive-Premetric x =
    elim-exists
      ( empty-Prop)
      ( λ d H  H (R d x))

Recent changes