Limits of sequences in premetric spaces

Content created by malarbol.

Created on 2025-05-01.
Last modified on 2025-05-01.

module metric-spaces.limits-of-sequences-premetric-spaces where
Imports
open import elementary-number-theory.inequality-natural-numbers
open import elementary-number-theory.maximum-natural-numbers
open import elementary-number-theory.natural-numbers
open import elementary-number-theory.positive-rational-numbers

open import foundation.constant-maps
open import foundation.dependent-pair-types
open import foundation.function-types
open import foundation.functoriality-dependent-pair-types
open import foundation.identity-types
open import foundation.inhabited-subtypes
open import foundation.inhabited-types
open import foundation.propositions
open import foundation.sequences
open import foundation.subsequences
open import foundation.subtypes
open import foundation.transport-along-identifications
open import foundation.universe-levels

open import metric-spaces.premetric-spaces
open import metric-spaces.sequences-premetric-spaces
open import metric-spaces.short-functions-premetric-spaces

Ideas

An element v of a premetric space M is the limit of a sequence u in a premetric space M if there exists a function m : ℚ⁺ → ℕ such that whenever m ε ≤ n in , u n is in an ε-neighborhood of l. The function m is called a limit modulus of the sequence u at l. Short maps between premetric spaces preserves limits.

Definition

Limits of sequences in a premetric space

module _
  {l1 l2 : Level} (M : Premetric-Space l1 l2)
  (u : sequence-type-Premetric-Space M)
  (lim : type-Premetric-Space M)
  where

  is-limit-modulus-prop-sequence-Premetric-Space : (ℚ⁺  )  Prop l2
  is-limit-modulus-prop-sequence-Premetric-Space m =
    Π-Prop
      ( ℚ⁺)
      ( λ ε 
        Π-Prop
          ( )
          ( λ (n : ) 
            hom-Prop
              ( leq-ℕ-Prop (m ε) n)
              ( structure-Premetric-Space M ε (u n) lim)))

  is-limit-modulus-sequence-Premetric-Space : (ℚ⁺  )  UU l2
  is-limit-modulus-sequence-Premetric-Space m =
    type-Prop (is-limit-modulus-prop-sequence-Premetric-Space m)

  limit-modulus-sequence-Premetric-Space : UU l2
  limit-modulus-sequence-Premetric-Space =
    type-subtype is-limit-modulus-prop-sequence-Premetric-Space

  modulus-limit-modulus-sequence-Premetric-Space :
    limit-modulus-sequence-Premetric-Space  ℚ⁺  
  modulus-limit-modulus-sequence-Premetric-Space m = pr1 m

  is-modulus-limit-modulus-sequence-Premetric-Space :
    (m : limit-modulus-sequence-Premetric-Space) 
    is-limit-modulus-sequence-Premetric-Space
      (modulus-limit-modulus-sequence-Premetric-Space m)
  is-modulus-limit-modulus-sequence-Premetric-Space m = pr2 m

  is-limit-prop-sequence-Premetric-Space : Prop l2
  is-limit-prop-sequence-Premetric-Space =
    is-inhabited-subtype-Prop is-limit-modulus-prop-sequence-Premetric-Space

  is-limit-sequence-Premetric-Space : UU l2
  is-limit-sequence-Premetric-Space =
    type-Prop is-limit-prop-sequence-Premetric-Space

Properties

Short maps between premetric spaces preserve limits of sequences

module _
  {l1 l2 l1' l2' : Level}
  (A : Premetric-Space l1 l2) (B : Premetric-Space l1' l2')
  (f : short-function-Premetric-Space A B)
  (u : sequence-type-Premetric-Space A)
  (lim : type-Premetric-Space A)
  where

  short-map-limit-modulus-sequence-Premetric-Space :
    limit-modulus-sequence-Premetric-Space A u lim 
    limit-modulus-sequence-Premetric-Space B
      ( map-sequence
        ( map-short-function-Premetric-Space A B f)
        ( u))
      ( map-short-function-Premetric-Space A B f lim)
  short-map-limit-modulus-sequence-Premetric-Space =
    tot
      ( λ m H ε n 
        is-short-map-short-function-Premetric-Space A B f ε (u n) lim 
        H ε n)

  short-map-limit-sequence-Premetric-Space :
    is-limit-sequence-Premetric-Space A u lim 
    is-limit-sequence-Premetric-Space B
      ( map-sequence
        ( map-short-function-Premetric-Space A B f)
        ( u))
      ( map-short-function-Premetric-Space A B f lim)
  short-map-limit-sequence-Premetric-Space =
    map-is-inhabited short-map-limit-modulus-sequence-Premetric-Space

A sequence in a premetric space has a limit if all its subsequences have this limit

module _
  {l1 l2 : Level} (M : Premetric-Space l1 l2)
  (u : sequence-type-Premetric-Space M)
  (lim : type-Premetric-Space M)
  where

  reflects-limit-subsequence-Premetric-Space :
    ( ( v : subsequence u) 
      is-limit-sequence-Premetric-Space M
        ( seq-subsequence u v)
        ( lim)) 
    is-limit-sequence-Premetric-Space M u lim
  reflects-limit-subsequence-Premetric-Space H = H (refl-subsequence u)

Recent changes