Limits of sequences in premetric spaces
Content created by malarbol.
Created on 2025-05-01.
Last modified on 2025-05-01.
module metric-spaces.limits-of-sequences-premetric-spaces where
Imports
open import elementary-number-theory.inequality-natural-numbers open import elementary-number-theory.maximum-natural-numbers open import elementary-number-theory.natural-numbers open import elementary-number-theory.positive-rational-numbers open import foundation.constant-maps open import foundation.dependent-pair-types open import foundation.function-types open import foundation.functoriality-dependent-pair-types open import foundation.identity-types open import foundation.inhabited-subtypes open import foundation.inhabited-types open import foundation.propositions open import foundation.sequences open import foundation.subsequences open import foundation.subtypes open import foundation.transport-along-identifications open import foundation.universe-levels open import metric-spaces.premetric-spaces open import metric-spaces.sequences-premetric-spaces open import metric-spaces.short-functions-premetric-spaces
Ideas
An element v
of a premetric space M
is
the
limit¶
of a sequence u
in a
premetric space M
if there exists a
function m : ℚ⁺ → ℕ
such that whenever m ε ≤ n
in ℕ
, u n
is in an
ε
-neighborhood of l
. The function
m
is called a
limit modulus¶
of the sequence u
at l
.
Short maps between
premetric spaces preserves limits.
Definition
Limits of sequences in a premetric space
module _ {l1 l2 : Level} (M : Premetric-Space l1 l2) (u : sequence-type-Premetric-Space M) (lim : type-Premetric-Space M) where is-limit-modulus-prop-sequence-Premetric-Space : (ℚ⁺ → ℕ) → Prop l2 is-limit-modulus-prop-sequence-Premetric-Space m = Π-Prop ( ℚ⁺) ( λ ε → Π-Prop ( ℕ) ( λ (n : ℕ) → hom-Prop ( leq-ℕ-Prop (m ε) n) ( structure-Premetric-Space M ε (u n) lim))) is-limit-modulus-sequence-Premetric-Space : (ℚ⁺ → ℕ) → UU l2 is-limit-modulus-sequence-Premetric-Space m = type-Prop (is-limit-modulus-prop-sequence-Premetric-Space m) limit-modulus-sequence-Premetric-Space : UU l2 limit-modulus-sequence-Premetric-Space = type-subtype is-limit-modulus-prop-sequence-Premetric-Space modulus-limit-modulus-sequence-Premetric-Space : limit-modulus-sequence-Premetric-Space → ℚ⁺ → ℕ modulus-limit-modulus-sequence-Premetric-Space m = pr1 m is-modulus-limit-modulus-sequence-Premetric-Space : (m : limit-modulus-sequence-Premetric-Space) → is-limit-modulus-sequence-Premetric-Space (modulus-limit-modulus-sequence-Premetric-Space m) is-modulus-limit-modulus-sequence-Premetric-Space m = pr2 m is-limit-prop-sequence-Premetric-Space : Prop l2 is-limit-prop-sequence-Premetric-Space = is-inhabited-subtype-Prop is-limit-modulus-prop-sequence-Premetric-Space is-limit-sequence-Premetric-Space : UU l2 is-limit-sequence-Premetric-Space = type-Prop is-limit-prop-sequence-Premetric-Space
Properties
Short maps between premetric spaces preserve limits of sequences
module _ {l1 l2 l1' l2' : Level} (A : Premetric-Space l1 l2) (B : Premetric-Space l1' l2') (f : short-function-Premetric-Space A B) (u : sequence-type-Premetric-Space A) (lim : type-Premetric-Space A) where short-map-limit-modulus-sequence-Premetric-Space : limit-modulus-sequence-Premetric-Space A u lim → limit-modulus-sequence-Premetric-Space B ( map-sequence ( map-short-function-Premetric-Space A B f) ( u)) ( map-short-function-Premetric-Space A B f lim) short-map-limit-modulus-sequence-Premetric-Space = tot ( λ m H ε n → is-short-map-short-function-Premetric-Space A B f ε (u n) lim ∘ H ε n) short-map-limit-sequence-Premetric-Space : is-limit-sequence-Premetric-Space A u lim → is-limit-sequence-Premetric-Space B ( map-sequence ( map-short-function-Premetric-Space A B f) ( u)) ( map-short-function-Premetric-Space A B f lim) short-map-limit-sequence-Premetric-Space = map-is-inhabited short-map-limit-modulus-sequence-Premetric-Space
A sequence in a premetric space has a limit if all its subsequences have this limit
module _ {l1 l2 : Level} (M : Premetric-Space l1 l2) (u : sequence-type-Premetric-Space M) (lim : type-Premetric-Space M) where reflects-limit-subsequence-Premetric-Space : ( ( v : subsequence u) → is-limit-sequence-Premetric-Space M ( seq-subsequence u v) ( lim)) → is-limit-sequence-Premetric-Space M u lim reflects-limit-subsequence-Premetric-Space H = H (refl-subsequence u)
Recent changes
- 2025-05-01. malarbol. Limits of sequences in metric spaces (#1378).