Continuous functions between premetric spaces

Content created by Louis Wasserman.

Created on 2025-03-30.
Last modified on 2025-03-30.

module metric-spaces.continuous-functions-premetric-spaces where
Imports
open import elementary-number-theory.positive-rational-numbers

open import foundation.dependent-pair-types
open import foundation.existential-quantification
open import foundation.inhabited-subtypes
open import foundation.propositional-truncations
open import foundation.propositions
open import foundation.subtypes
open import foundation.universe-levels

open import metric-spaces.premetric-spaces

Idea

A function f between premetric spaces X and Y is continuous at a point x if there exists a function m : ℚ⁺ → ℚ⁺ such that whenever x' is in an m ε-neighborhood of x, f x' is in an ε-neighborhood of f x. m is called a modulus of continuity of f at x.

Definitions

module _
  {l1 l2 l3 l4 : Level} (X : Premetric-Space l1 l2) (Y : Premetric-Space l3 l4)
  (f : map-type-Premetric-Space X Y)
  where

  is-modulus-of-continuity-at-point-prop-Premetric-Space :
    (x : type-Premetric-Space X)  (ℚ⁺  ℚ⁺)  Prop (l1  l2  l4)
  is-modulus-of-continuity-at-point-prop-Premetric-Space x m =
    Π-Prop
      ( ℚ⁺)
      ( λ ε 
        Π-Prop
          ( type-Premetric-Space X)
          ( λ x' 
            structure-Premetric-Space X (m ε) x x' 
            structure-Premetric-Space Y ε (f x) (f x')))

  is-modulus-of-continuity-at-point-Premetric-Space :
    (x : type-Premetric-Space X)  UU (l1  l2  l4)
  is-modulus-of-continuity-at-point-Premetric-Space x =
    type-subtype (is-modulus-of-continuity-at-point-prop-Premetric-Space x)

  is-continuous-at-point-prop-Premetric-Space :
    (x : type-Premetric-Space X)  Prop (l1  l2  l4)
  is-continuous-at-point-prop-Premetric-Space x =
    is-inhabited-subtype-Prop
      (is-modulus-of-continuity-at-point-prop-Premetric-Space x)

  is-continuous-at-point-Premetric-Space :
    (x : type-Premetric-Space X)  UU (l1  l2  l4)
  is-continuous-at-point-Premetric-Space x =
    type-Prop (is-continuous-at-point-prop-Premetric-Space x)

Recent changes