Continuous functions between premetric spaces
Content created by Louis Wasserman.
Created on 2025-03-30.
Last modified on 2025-03-30.
module metric-spaces.continuous-functions-premetric-spaces where
Imports
open import elementary-number-theory.positive-rational-numbers open import foundation.dependent-pair-types open import foundation.existential-quantification open import foundation.inhabited-subtypes open import foundation.propositional-truncations open import foundation.propositions open import foundation.subtypes open import foundation.universe-levels open import metric-spaces.premetric-spaces
Idea
A function f
between premetric spaces X
and Y
is
continuous¶
at a point x
if there exists a function m : ℚ⁺ → ℚ⁺
such that whenever x'
is in an m ε
-neighborhood of x
, f x'
is in an ε
-neighborhood of f x
.
m
is called a modulus of continuity of f
at x
.
Definitions
module _ {l1 l2 l3 l4 : Level} (X : Premetric-Space l1 l2) (Y : Premetric-Space l3 l4) (f : map-type-Premetric-Space X Y) where is-modulus-of-continuity-at-point-prop-Premetric-Space : (x : type-Premetric-Space X) → (ℚ⁺ → ℚ⁺) → Prop (l1 ⊔ l2 ⊔ l4) is-modulus-of-continuity-at-point-prop-Premetric-Space x m = Π-Prop ( ℚ⁺) ( λ ε → Π-Prop ( type-Premetric-Space X) ( λ x' → structure-Premetric-Space X (m ε) x x' ⇒ structure-Premetric-Space Y ε (f x) (f x'))) is-modulus-of-continuity-at-point-Premetric-Space : (x : type-Premetric-Space X) → UU (l1 ⊔ l2 ⊔ l4) is-modulus-of-continuity-at-point-Premetric-Space x = type-subtype (is-modulus-of-continuity-at-point-prop-Premetric-Space x) is-continuous-at-point-prop-Premetric-Space : (x : type-Premetric-Space X) → Prop (l1 ⊔ l2 ⊔ l4) is-continuous-at-point-prop-Premetric-Space x = is-inhabited-subtype-Prop (is-modulus-of-continuity-at-point-prop-Premetric-Space x) is-continuous-at-point-Premetric-Space : (x : type-Premetric-Space X) → UU (l1 ⊔ l2 ⊔ l4) is-continuous-at-point-Premetric-Space x = type-Prop (is-continuous-at-point-prop-Premetric-Space x)
External links
- Continuous function at Wikidata
Recent changes
- 2025-03-30. Louis Wasserman. Continuity of functions between metric spaces (#1375).