Induced premetric structures on preimages
Content created by Fredrik Bakke and malarbol.
Created on 2024-09-28.
Last modified on 2024-09-28.
module metric-spaces.induced-premetric-structures-on-preimages where
Imports
open import elementary-number-theory.positive-rational-numbers open import foundation.function-types open import foundation.identity-types open import foundation.injective-maps open import foundation.universe-levels open import metric-spaces.extensional-premetric-structures open import metric-spaces.monotonic-premetric-structures open import metric-spaces.premetric-structures open import metric-spaces.reflexive-premetric-structures open import metric-spaces.symmetric-premetric-structures open import metric-spaces.triangular-premetric-structures
Idea
Any premetric structure U
on a type
B
and map f : A → B
defines a premetric on A
where x y : A
are
d
-neighbors if f x
and f y
are d
-neighbors in U
. This is the
preimage¶
of U
by f
. In this premetric, upper bounds of the distance between
(x y : A)
are upper bounds of the distance between f x
and f y
in U
.
Definitions
The induced premetric on the preimage of a map
module _ {l1 l1' l2 : Level} {A : UU l1} {B : UU l1'} (f : A → B) (V : Premetric l2 B) where preimage-Premetric : Premetric l2 A preimage-Premetric d x y = V d (f x) (f y)
Properties
The preimage of a reflexive premetric is reflexive
module _ {l1 l1' l2 : Level} {A : UU l1} {B : UU l1'} (f : A → B) (V : Premetric l2 B) (R : is-reflexive-Premetric V) where preserves-reflexive-preimage-Premetric : is-reflexive-Premetric (preimage-Premetric f V) preserves-reflexive-preimage-Premetric d x = R d (f x)
The preimage of a symmetric premetric is symmetric
module _ {l1 l1' l2 : Level} {A : UU l1} {B : UU l1'} (f : A → B) (V : Premetric l2 B) (S : is-symmetric-Premetric V) where preserves-symmetric-preimage-Premetric : is-symmetric-Premetric (preimage-Premetric f V) preserves-symmetric-preimage-Premetric d x y = S d (f x) (f y)
The preimage of a monotonic premetric is monotonic
module _ {l1 l1' l2 : Level} {A : UU l1} {B : UU l1'} (f : A → B) (V : Premetric l2 B) (I : is-monotonic-Premetric V) where preserves-monotonic-preimage-Premetric : is-monotonic-Premetric (preimage-Premetric f V) preserves-monotonic-preimage-Premetric x y = I (f x) (f y)
The preimage of a triangular premetric is triangular
module _ {l1 l1' l2 : Level} {A : UU l1} {B : UU l1'} (f : A → B) (V : Premetric l2 B) (T : is-triangular-Premetric V) where preserves-triangular-preimage-Premetric : is-triangular-Premetric (preimage-Premetric f V) preserves-triangular-preimage-Premetric x y z = T (f x) (f y) (f z)
The preimage of a tight metric along an injective map is tight
module _ {l1 l1' l2 : Level} {A : UU l1} {B : UU l1'} (f : A → B) (V : Premetric l2 B) (I : is-injective f) (T : is-tight-Premetric V) where preserves-tight-injective-preimage-Premetric : is-tight-Premetric (preimage-Premetric f V) preserves-tight-injective-preimage-Premetric x y = I ∘ (T (f x) (f y))
The preimage along the identity is the identity
module _ {l1 l2 : Level} {A : UU l1} (U : Premetric l2 A) where eq-preimage-id-Premetric : preimage-Premetric id U = U eq-preimage-id-Premetric = refl
The preimage of premetrics is contravariant
module _ {la lb lc l : Level} {A : UU la} {B : UU lb} {C : UU lc} (g : B → C) (f : A → B) (W : Premetric l C) where eq-preimage-comp-Premetric : preimage-Premetric f (preimage-Premetric g W) = preimage-Premetric (g ∘ f) W eq-preimage-comp-Premetric = refl
Recent changes
- 2024-09-28. malarbol and Fredrik Bakke. Metric spaces (#1162).