The Eisenstein integers
Content created by Fredrik Bakke, Egbert Rijke and Jonathan Prieto-Cubides.
Created on 2022-04-22.
Last modified on 2024-02-06.
module commutative-algebra.eisenstein-integers where
Imports
open import commutative-algebra.commutative-rings open import elementary-number-theory.addition-integers open import elementary-number-theory.integers open import elementary-number-theory.multiplication-integers open import foundation.action-on-identifications-binary-functions open import foundation.action-on-identifications-functions open import foundation.cartesian-product-types open import foundation.dependent-pair-types open import foundation.identity-types open import foundation.sets open import foundation.universe-levels open import group-theory.abelian-groups open import group-theory.groups open import group-theory.semigroups open import ring-theory.rings
Idea
The Eisenstein integers are the complex numbers of the form a + bω
, where
ω = -½ + ½√3i
, and where a
and b
are integers. Note that ω
is a solution
to the equation ω² + ω + 1 = 0
.
Definition
The underlying type of the Eisenstein integers
ℤ[ω] : UU lzero ℤ[ω] = ℤ × ℤ
Observational equality of the Eisenstein integers
Eq-ℤ[ω] : ℤ[ω] → ℤ[ω] → UU lzero Eq-ℤ[ω] x y = (pr1 x = pr1 y) × (pr2 x = pr2 y) refl-Eq-ℤ[ω] : (x : ℤ[ω]) → Eq-ℤ[ω] x x pr1 (refl-Eq-ℤ[ω] x) = refl pr2 (refl-Eq-ℤ[ω] x) = refl Eq-eq-ℤ[ω] : {x y : ℤ[ω]} → x = y → Eq-ℤ[ω] x y Eq-eq-ℤ[ω] {x} refl = refl-Eq-ℤ[ω] x eq-Eq-ℤ[ω]' : {x y : ℤ[ω]} → Eq-ℤ[ω] x y → x = y eq-Eq-ℤ[ω]' {a , b} {.a , .b} (refl , refl) = refl eq-Eq-ℤ[ω] : {x y : ℤ[ω]} → (pr1 x = pr1 y) → (pr2 x = pr2 y) → x = y eq-Eq-ℤ[ω] {a , b} {.a , .b} refl refl = refl
The Eisenstein integer zero
zero-ℤ[ω] : ℤ[ω] pr1 zero-ℤ[ω] = zero-ℤ pr2 zero-ℤ[ω] = zero-ℤ
The Eisenstein integer one
one-ℤ[ω] : ℤ[ω] pr1 one-ℤ[ω] = one-ℤ pr2 one-ℤ[ω] = zero-ℤ
The inclusion of the integers into the Eisenstein integers
eisenstein-int-ℤ : ℤ → ℤ[ω] pr1 (eisenstein-int-ℤ x) = x pr2 (eisenstein-int-ℤ x) = zero-ℤ
The Eisenstein integer ω
ω-ℤ[ω] : ℤ[ω] pr1 ω-ℤ[ω] = zero-ℤ pr2 ω-ℤ[ω] = one-ℤ
The Eisenstein integer -ω
neg-ω-ℤ[ω] : ℤ[ω] pr1 neg-ω-ℤ[ω] = zero-ℤ pr2 neg-ω-ℤ[ω] = neg-one-ℤ
Addition of Eisenstein integers
add-ℤ[ω] : ℤ[ω] → ℤ[ω] → ℤ[ω] pr1 (add-ℤ[ω] (a , b) (a' , b')) = a +ℤ a' pr2 (add-ℤ[ω] (a , b) (a' , b')) = b +ℤ b' infixl 35 _+ℤ[ω]_ _+ℤ[ω]_ = add-ℤ[ω] ap-add-ℤ[ω] : {x x' y y' : ℤ[ω]} → x = x' → y = y' → x +ℤ[ω] y = x' +ℤ[ω] y' ap-add-ℤ[ω] p q = ap-binary add-ℤ[ω] p q
Negatives of Eisenstein integers
neg-ℤ[ω] : ℤ[ω] → ℤ[ω] pr1 (neg-ℤ[ω] (a , b)) = neg-ℤ a pr2 (neg-ℤ[ω] (a , b)) = neg-ℤ b
Multiplication of Eisenstein integers
Note that (a + bω)(c + dω) = (ac - bd) + (ad + cb - bd)ω
mul-ℤ[ω] : ℤ[ω] → ℤ[ω] → ℤ[ω] pr1 (mul-ℤ[ω] (a1 , b1) (a2 , b2)) = (a1 *ℤ a2) +ℤ (neg-ℤ (b1 *ℤ b2)) pr2 (mul-ℤ[ω] (a1 , b1) (a2 , b2)) = ((a1 *ℤ b2) +ℤ (a2 *ℤ b1)) +ℤ (neg-ℤ (b1 *ℤ b2)) infixl 40 _*ℤ[ω]_ _*ℤ[ω]_ = mul-ℤ[ω] ap-mul-ℤ[ω] : {x x' y y' : ℤ[ω]} → x = x' → y = y' → x *ℤ[ω] y = x' *ℤ[ω] y' ap-mul-ℤ[ω] p q = ap-binary mul-ℤ[ω] p q
Conjugation of Eisenstein integers
The conjugate of a + bω
is a + bω²
, which is (a - b) - bω
.
conjugate-ℤ[ω] : ℤ[ω] → ℤ[ω] pr1 (conjugate-ℤ[ω] (a , b)) = a +ℤ (neg-ℤ b) pr2 (conjugate-ℤ[ω] (a , b)) = neg-ℤ b conjugate-conjugate-ℤ[ω] : (x : ℤ[ω]) → conjugate-ℤ[ω] (conjugate-ℤ[ω] x) = x conjugate-conjugate-ℤ[ω] (a , b) = eq-Eq-ℤ[ω] (is-retraction-right-add-neg-ℤ (neg-ℤ b) a) (neg-neg-ℤ b)
The Eisenstein integers form a ring with conjugation
left-unit-law-add-ℤ[ω] : (x : ℤ[ω]) → zero-ℤ[ω] +ℤ[ω] x = x left-unit-law-add-ℤ[ω] (a , b) = eq-Eq-ℤ[ω] refl refl right-unit-law-add-ℤ[ω] : (x : ℤ[ω]) → x +ℤ[ω] zero-ℤ[ω] = x right-unit-law-add-ℤ[ω] (a , b) = eq-Eq-ℤ[ω] (right-unit-law-add-ℤ a) (right-unit-law-add-ℤ b) associative-add-ℤ[ω] : (x y z : ℤ[ω]) → (x +ℤ[ω] y) +ℤ[ω] z = x +ℤ[ω] (y +ℤ[ω] z) associative-add-ℤ[ω] (a , b) (c , d) (e , f) = eq-Eq-ℤ[ω] (associative-add-ℤ a c e) (associative-add-ℤ b d f) left-inverse-law-add-ℤ[ω] : (x : ℤ[ω]) → (neg-ℤ[ω] x) +ℤ[ω] x = zero-ℤ[ω] left-inverse-law-add-ℤ[ω] (a , b) = eq-Eq-ℤ[ω] (left-inverse-law-add-ℤ a) (left-inverse-law-add-ℤ b) right-inverse-law-add-ℤ[ω] : (x : ℤ[ω]) → x +ℤ[ω] (neg-ℤ[ω] x) = zero-ℤ[ω] right-inverse-law-add-ℤ[ω] (a , b) = eq-Eq-ℤ[ω] (right-inverse-law-add-ℤ a) (right-inverse-law-add-ℤ b) commutative-add-ℤ[ω] : (x y : ℤ[ω]) → x +ℤ[ω] y = y +ℤ[ω] x commutative-add-ℤ[ω] (a , b) (a' , b') = eq-Eq-ℤ[ω] (commutative-add-ℤ a a') (commutative-add-ℤ b b') left-unit-law-mul-ℤ[ω] : (x : ℤ[ω]) → one-ℤ[ω] *ℤ[ω] x = x left-unit-law-mul-ℤ[ω] (a , b) = eq-Eq-ℤ[ω] ( right-unit-law-add-ℤ a) ( ( right-unit-law-add-ℤ (b +ℤ (a *ℤ zero-ℤ))) ∙ ( ( ap (b +ℤ_) (right-zero-law-mul-ℤ a)) ∙ ( right-unit-law-add-ℤ b))) right-unit-law-mul-ℤ[ω] : (x : ℤ[ω]) → x *ℤ[ω] one-ℤ[ω] = x right-unit-law-mul-ℤ[ω] (a , b) = eq-Eq-ℤ[ω] ( ( ap-add-ℤ (right-unit-law-mul-ℤ a) (ap neg-ℤ (right-zero-law-mul-ℤ b))) ∙ ( right-unit-law-add-ℤ a)) ( ( ap-add-ℤ ( ap (_+ℤ b) (right-zero-law-mul-ℤ a)) ( ap neg-ℤ (right-zero-law-mul-ℤ b))) ∙ ( right-unit-law-add-ℤ b)) commutative-mul-ℤ[ω] : (x y : ℤ[ω]) → x *ℤ[ω] y = y *ℤ[ω] x commutative-mul-ℤ[ω] (a , b) (c , d) = eq-Eq-ℤ[ω] ( ap-add-ℤ (commutative-mul-ℤ a c) (ap neg-ℤ (commutative-mul-ℤ b d))) ( ap-add-ℤ ( commutative-add-ℤ (a *ℤ d) (c *ℤ b)) ( ap neg-ℤ (commutative-mul-ℤ b d))) associative-mul-ℤ[ω] : (x y z : ℤ[ω]) → (x *ℤ[ω] y) *ℤ[ω] z = x *ℤ[ω] (y *ℤ[ω] z) associative-mul-ℤ[ω] (a , b) (c , d) (e , f) = eq-Eq-ℤ[ω] ( ( ap-add-ℤ ( ( right-distributive-mul-add-ℤ ( a *ℤ c) ( neg-ℤ (b *ℤ d)) ( e)) ∙ ( ap-add-ℤ ( associative-mul-ℤ a c e) ( ( left-negative-law-mul-ℤ (b *ℤ d) e) ∙ ( ap neg-ℤ (associative-mul-ℤ b d e))))) ( ( ap ( neg-ℤ) ( ( right-distributive-mul-add-ℤ ( (a *ℤ d) +ℤ (c *ℤ b)) ( neg-ℤ (b *ℤ d)) ( f)) ∙ ( ap-add-ℤ ( ( right-distributive-mul-add-ℤ (a *ℤ d) (c *ℤ b) f) ∙ ( ap-add-ℤ ( associative-mul-ℤ a d f) ( ( ap (_*ℤ f) (commutative-mul-ℤ c b)) ∙ ( associative-mul-ℤ b c f)))) ( ( left-negative-law-mul-ℤ (b *ℤ d) f) ∙ ( ap neg-ℤ (associative-mul-ℤ b d f)))))) ∙ ( ( distributive-neg-add-ℤ ( (a *ℤ (d *ℤ f)) +ℤ (b *ℤ (c *ℤ f))) ( neg-ℤ (b *ℤ (d *ℤ f)))) ∙ ( ( ap-add-ℤ ( distributive-neg-add-ℤ ( a *ℤ (d *ℤ f)) ( b *ℤ (c *ℤ f))) ( refl { x = neg-ℤ (neg-ℤ (b *ℤ (d *ℤ f)))})) ∙ ( associative-add-ℤ ( neg-ℤ (a *ℤ (d *ℤ f))) ( neg-ℤ (b *ℤ (c *ℤ f))) ( neg-ℤ (neg-ℤ (b *ℤ (d *ℤ f))))))))) ∙ ( ( interchange-law-add-add-ℤ ( a *ℤ (c *ℤ e)) ( neg-ℤ (b *ℤ (d *ℤ e))) ( neg-ℤ (a *ℤ (d *ℤ f))) ( ( neg-ℤ (b *ℤ (c *ℤ f))) +ℤ (neg-ℤ (neg-ℤ (b *ℤ (d *ℤ f)))))) ∙ ( ap-add-ℤ ( ( ap ( (a *ℤ (c *ℤ e)) +ℤ_) ( inv ( right-negative-law-mul-ℤ a (d *ℤ f)))) ∙ ( inv ( left-distributive-mul-add-ℤ a (c *ℤ e) (neg-ℤ (d *ℤ f))))) ( ( ap ( (neg-ℤ (b *ℤ (d *ℤ e))) +ℤ_) ( inv ( distributive-neg-add-ℤ ( b *ℤ (c *ℤ f)) ( neg-ℤ (b *ℤ (d *ℤ f)))))) ∙ ( ( inv ( distributive-neg-add-ℤ ( b *ℤ (d *ℤ e)) ( (b *ℤ (c *ℤ f)) +ℤ (neg-ℤ (b *ℤ (d *ℤ f)))))) ∙ ( ap ( neg-ℤ) ( ( ap ( (b *ℤ (d *ℤ e)) +ℤ_) ( ( ap ( (b *ℤ (c *ℤ f)) +ℤ_) ( inv (right-negative-law-mul-ℤ b (d *ℤ f)))) ∙ ( inv ( left-distributive-mul-add-ℤ b ( c *ℤ f) ( neg-ℤ (d *ℤ f)))))) ∙ ( ( inv ( left-distributive-mul-add-ℤ b ( d *ℤ e) ( (c *ℤ f) +ℤ (neg-ℤ (d *ℤ f))))) ∙ ( ap ( b *ℤ_) ( ( inv ( associative-add-ℤ ( d *ℤ e) ( c *ℤ f) ( neg-ℤ (d *ℤ f)))) ∙ ( ap ( _+ℤ (neg-ℤ (d *ℤ f))) ( ( commutative-add-ℤ (d *ℤ e) (c *ℤ f)) ∙ ( ap ( (c *ℤ f) +ℤ_) ( commutative-mul-ℤ d e)))))))))))))) ( ( ap-add-ℤ ( ( ap-add-ℤ ( ( right-distributive-mul-add-ℤ ac (neg-ℤ bd) f) ∙ ( ap-add-ℤ ( associative-mul-ℤ a c f) ( ( left-negative-law-mul-ℤ bd f) ∙ ( ( ap neg-ℤ (associative-mul-ℤ b d f)) ∙ ( ( inv (right-negative-law-mul-ℤ b df)) ∙ ( commutative-mul-ℤ b (neg-ℤ df))))))) ( ( left-distributive-mul-add-ℤ e (ad +ℤ cb) (neg-ℤ bd)) ∙ ( ( ap-add-ℤ ( ( left-distributive-mul-add-ℤ e ad cb) ∙ ( ap-add-ℤ ( ( commutative-mul-ℤ e ad) ∙ ( ( associative-mul-ℤ a d e) ∙ ( ap (a *ℤ_) (commutative-mul-ℤ d e)))) ( ( ap (e *ℤ_) (commutative-mul-ℤ c b)) ∙ ( ( commutative-mul-ℤ e (b *ℤ c)) ∙ ( ( associative-mul-ℤ b c e) ∙ ( commutative-mul-ℤ b ce)))))) ( ( right-negative-law-mul-ℤ e bd) ∙ ( ( ap ( neg-ℤ) ( ( commutative-mul-ℤ e bd) ∙ ( associative-mul-ℤ b d e))) ∙ ( ap ( neg-ℤ) ( ap (b *ℤ_) (commutative-mul-ℤ d e)))))) ∙ ( associative-add-ℤ ( a *ℤ ed) ( ce *ℤ b) ( neg-ℤ (b *ℤ ed)))))) ∙ ( ( interchange-law-add-add-ℤ ( a *ℤ cf) ( (neg-ℤ df) *ℤ b) ( a *ℤ ed) ( (ce *ℤ b) +ℤ (neg-ℤ (b *ℤ ed)))) ∙ ( ( ap-add-ℤ ( inv (left-distributive-mul-add-ℤ a cf ed)) ( ( inv ( associative-add-ℤ ( (neg-ℤ df) *ℤ b) ( ce *ℤ b) ( neg-ℤ (b *ℤ ed)))) ∙ ( ap ( _+ℤ (neg-ℤ (b *ℤ ed))) ( ( commutative-add-ℤ ((neg-ℤ df) *ℤ b) (ce *ℤ b)) ∙ ( inv ( right-distributive-mul-add-ℤ ce (neg-ℤ df) b)))))) ∙ ( ( inv ( associative-add-ℤ ( a *ℤ (cf +ℤ ed)) ( (ce +ℤ (neg-ℤ df)) *ℤ b) ( neg-ℤ (b *ℤ ed)))) ∙ ( ( ap ( _+ℤ (neg-ℤ (b *ℤ ed))) ( commutative-add-ℤ ( a *ℤ (cf +ℤ ed)) ( (ce +ℤ (neg-ℤ df)) *ℤ b))) ∙ ( associative-add-ℤ ( (ce +ℤ (neg-ℤ df)) *ℤ b) ( a *ℤ (cf +ℤ ed)) ( neg-ℤ (b *ℤ ed)))))))) ( ( inv (left-negative-law-mul-ℤ ((ad +ℤ cb) +ℤ (neg-ℤ bd)) f)) ∙ ( ( ap ( _*ℤ f) ( ( distributive-neg-add-ℤ (ad +ℤ cb) (neg-ℤ bd)) ∙ ( ap-add-ℤ (distributive-neg-add-ℤ ad cb) (neg-neg-ℤ bd)))) ∙ ( ( right-distributive-mul-add-ℤ ( (neg-ℤ ad) +ℤ (neg-ℤ cb)) ( bd) ( f)) ∙ ( ( ap-add-ℤ ( ( right-distributive-mul-add-ℤ (neg-ℤ ad) (neg-ℤ cb) f) ∙ ( ap-add-ℤ ( ( left-negative-law-mul-ℤ ad f) ∙ ( ( ap ( neg-ℤ) ( associative-mul-ℤ a d f)) ∙ ( inv (right-negative-law-mul-ℤ a df)))) ( ( left-negative-law-mul-ℤ cb f) ∙ ( ap ( neg-ℤ) ( ( ap ( _*ℤ f) ( commutative-mul-ℤ c b)) ∙ ( associative-mul-ℤ b c f)))))) ( ( associative-mul-ℤ b d f) ∙ ( ( inv (neg-neg-ℤ (b *ℤ df))) ∙ ( ap neg-ℤ (inv (right-negative-law-mul-ℤ b df)))))) ∙ ( ( associative-add-ℤ ( a *ℤ ( neg-ℤ df)) ( neg-ℤ (b *ℤ cf)) ( neg-ℤ (b *ℤ (neg-ℤ df)))) ∙ ( ap ( (a *ℤ (neg-ℤ df)) +ℤ_) ( ( inv ( distributive-neg-add-ℤ ( b *ℤ cf) ( b *ℤ (neg-ℤ df)))) ∙ ( ap ( neg-ℤ) ( inv ( left-distributive-mul-add-ℤ ( b) ( cf) ( neg-ℤ df)))))))))))) ∙ ( ( associative-add-ℤ ( (ce +ℤ (neg-ℤ df)) *ℤ b) ( (a *ℤ (cf +ℤ ed)) +ℤ (neg-ℤ (b *ℤ ed))) ( (a *ℤ (neg-ℤ df)) +ℤ (neg-ℤ (b *ℤ (cf +ℤ (neg-ℤ df)))))) ∙ ( ( ( ap ( ((ce +ℤ (neg-ℤ df)) *ℤ b) +ℤ_) ( ( interchange-law-add-add-ℤ ( a *ℤ (cf +ℤ ed)) ( neg-ℤ (b *ℤ ed)) ( a *ℤ (neg-ℤ df)) ( neg-ℤ (b *ℤ (cf +ℤ (neg-ℤ df))))) ∙ ( ap-add-ℤ ( inv ( left-distributive-mul-add-ℤ a (cf +ℤ ed) (neg-ℤ df))) ( ( inv ( distributive-neg-add-ℤ ( b *ℤ ed) ( b *ℤ (cf +ℤ (neg-ℤ df))))) ∙ ( ap ( neg-ℤ) ( ( inv ( left-distributive-mul-add-ℤ b ed ( cf +ℤ (neg-ℤ df)))) ∙ ( ap ( b *ℤ_) ( ( inv ( associative-add-ℤ ed cf (neg-ℤ df))) ∙ ( ap ( _+ℤ (neg-ℤ df)) ( commutative-add-ℤ ed cf)))))))))) ∙ ( inv ( associative-add-ℤ ( (ce +ℤ (neg-ℤ df)) *ℤ b) ( a *ℤ ((cf +ℤ ed) +ℤ (neg-ℤ df))) ( neg-ℤ (b *ℤ ((cf +ℤ ed) +ℤ (neg-ℤ df))))))) ∙ ( ap ( _+ℤ (neg-ℤ (b *ℤ ((cf +ℤ ed) +ℤ (neg-ℤ df))))) ( commutative-add-ℤ ( (ce +ℤ (neg-ℤ df)) *ℤ b) ( a *ℤ ((cf +ℤ ed) +ℤ (neg-ℤ df)))))))) where ac = a *ℤ c bd = b *ℤ d ad = a *ℤ d cb = c *ℤ b ce = c *ℤ e cf = c *ℤ f ed = e *ℤ d df = d *ℤ f left-distributive-mul-add-ℤ[ω] : (x y z : ℤ[ω]) → x *ℤ[ω] (y +ℤ[ω] z) = (x *ℤ[ω] y) +ℤ[ω] (x *ℤ[ω] z) left-distributive-mul-add-ℤ[ω] (a , b) (c , d) (e , f) = eq-Eq-ℤ[ω] ( ( ap-add-ℤ ( left-distributive-mul-add-ℤ a c e) ( ( ap ( neg-ℤ) ( left-distributive-mul-add-ℤ b d f)) ∙ ( distributive-neg-add-ℤ (b *ℤ d) (b *ℤ f)))) ∙ ( interchange-law-add-add-ℤ ( a *ℤ c) ( a *ℤ e) ( neg-ℤ (b *ℤ d)) ( neg-ℤ (b *ℤ f)))) ( ( ap-add-ℤ ( ( ap-add-ℤ ( left-distributive-mul-add-ℤ a d f) ( right-distributive-mul-add-ℤ c e b)) ∙ ( interchange-law-add-add-ℤ ( a *ℤ d) ( a *ℤ f) ( c *ℤ b) ( e *ℤ b))) ( ( ap neg-ℤ (left-distributive-mul-add-ℤ b d f)) ∙ ( distributive-neg-add-ℤ (b *ℤ d) (b *ℤ f)))) ∙ ( interchange-law-add-add-ℤ ( (a *ℤ d) +ℤ (c *ℤ b)) ( (a *ℤ f) +ℤ (e *ℤ b)) ( neg-ℤ (b *ℤ d)) ( neg-ℤ (b *ℤ f)))) right-distributive-mul-add-ℤ[ω] : (x y z : ℤ[ω]) → (x +ℤ[ω] y) *ℤ[ω] z = (x *ℤ[ω] z) +ℤ[ω] (y *ℤ[ω] z) right-distributive-mul-add-ℤ[ω] x y z = ( commutative-mul-ℤ[ω] (x +ℤ[ω] y) z) ∙ ( ( left-distributive-mul-add-ℤ[ω] z x y) ∙ ( ap-add-ℤ[ω] (commutative-mul-ℤ[ω] z x) (commutative-mul-ℤ[ω] z y))) ℤ[ω]-Semigroup : Semigroup lzero pr1 ℤ[ω]-Semigroup = product-Set ℤ-Set ℤ-Set pr1 (pr2 ℤ[ω]-Semigroup) = add-ℤ[ω] pr2 (pr2 ℤ[ω]-Semigroup) = associative-add-ℤ[ω] ℤ[ω]-Group : Group lzero pr1 ℤ[ω]-Group = ℤ[ω]-Semigroup pr1 (pr1 (pr2 ℤ[ω]-Group)) = zero-ℤ[ω] pr1 (pr2 (pr1 (pr2 ℤ[ω]-Group))) = left-unit-law-add-ℤ[ω] pr2 (pr2 (pr1 (pr2 ℤ[ω]-Group))) = right-unit-law-add-ℤ[ω] pr1 (pr2 (pr2 ℤ[ω]-Group)) = neg-ℤ[ω] pr1 (pr2 (pr2 (pr2 ℤ[ω]-Group))) = left-inverse-law-add-ℤ[ω] pr2 (pr2 (pr2 (pr2 ℤ[ω]-Group))) = right-inverse-law-add-ℤ[ω] ℤ[ω]-Ab : Ab lzero pr1 ℤ[ω]-Ab = ℤ[ω]-Group pr2 ℤ[ω]-Ab = commutative-add-ℤ[ω] ℤ[ω]-Ring : Ring lzero pr1 ℤ[ω]-Ring = ℤ[ω]-Ab pr1 (pr1 (pr2 ℤ[ω]-Ring)) = mul-ℤ[ω] pr2 (pr1 (pr2 ℤ[ω]-Ring)) = associative-mul-ℤ[ω] pr1 (pr1 (pr2 (pr2 ℤ[ω]-Ring))) = one-ℤ[ω] pr1 (pr2 (pr1 (pr2 (pr2 ℤ[ω]-Ring)))) = left-unit-law-mul-ℤ[ω] pr2 (pr2 (pr1 (pr2 (pr2 ℤ[ω]-Ring)))) = right-unit-law-mul-ℤ[ω] pr1 (pr2 (pr2 (pr2 ℤ[ω]-Ring))) = left-distributive-mul-add-ℤ[ω] pr2 (pr2 (pr2 (pr2 ℤ[ω]-Ring))) = right-distributive-mul-add-ℤ[ω] ℤ[ω]-Commutative-Ring : Commutative-Ring lzero pr1 ℤ[ω]-Commutative-Ring = ℤ[ω]-Ring pr2 ℤ[ω]-Commutative-Ring = commutative-mul-ℤ[ω]
Recent changes
- 2024-02-06. Fredrik Bakke. Rename
(co)prod
to(co)product
(#1017). - 2023-09-10. Fredrik Bakke. Define precedence levels and associativities for all binary operators (#712).
- 2023-06-15. Egbert Rijke. Replace
isretr
withis-retraction
andissec
withis-section
(#659). - 2023-06-10. Egbert Rijke and Fredrik Bakke. Cleaning up synthetic homotopy theory (#649).
- 2023-05-13. Fredrik Bakke. Refactor to use infix binary operators for arithmetic (#620).