Uniformly continuous functions between premetric spaces
Content created by Louis Wasserman.
Created on 2025-03-30.
Last modified on 2025-03-30.
module metric-spaces.uniformly-continuous-functions-premetric-spaces where
Imports
open import elementary-number-theory.positive-rational-numbers open import foundation.dependent-pair-types open import foundation.existential-quantification open import foundation.function-types open import foundation.inhabited-subtypes open import foundation.propositional-truncations open import foundation.propositions open import foundation.subtypes open import foundation.universe-levels open import metric-spaces.continuous-functions-premetric-spaces open import metric-spaces.premetric-spaces
Idea
A function f
between premetric spaces X
and Y
is
uniformly continuous¶
if there exists a function m : ℚ⁺ → ℚ⁺
such that for any x : X
, whenever
x'
is in an m ε
-neighborhood of x
, f x'
is in an ε
-neighborhood of
f x
. The function m
is called a modulus of uniform continuity of f
.
Definitions
module _ {l1 l2 l3 l4 : Level} (X : Premetric-Space l1 l2) (Y : Premetric-Space l3 l4) (f : map-type-Premetric-Space X Y) where is-modulus-of-uniform-continuity-prop-Premetric-Space : (ℚ⁺ → ℚ⁺) → Prop (l1 ⊔ l2 ⊔ l4) is-modulus-of-uniform-continuity-prop-Premetric-Space m = Π-Prop ( type-Premetric-Space X) ( λ x → is-modulus-of-continuity-at-point-prop-Premetric-Space X Y f x m) is-uniformly-continuous-map-prop-Premetric-Space : Prop (l1 ⊔ l2 ⊔ l4) is-uniformly-continuous-map-prop-Premetric-Space = is-inhabited-subtype-Prop ( is-modulus-of-uniform-continuity-prop-Premetric-Space) is-uniformly-continuous-map-Premetric-Space : UU (l1 ⊔ l2 ⊔ l4) is-uniformly-continuous-map-Premetric-Space = type-Prop is-uniformly-continuous-map-prop-Premetric-Space is-continuous-at-point-is-uniformly-continuous-map-Premetric-Space : is-uniformly-continuous-map-Premetric-Space → (x : type-Premetric-Space X) → is-continuous-at-point-Premetric-Space X Y f x is-continuous-at-point-is-uniformly-continuous-map-Premetric-Space H x = do m , is-modulus-uniform-m ← H intro-exists m (is-modulus-uniform-m x) where open do-syntax-trunc-Prop ( is-continuous-at-point-prop-Premetric-Space X Y f x)
Properties
The identity function is uniformly continuous
module _ {l1 l2 : Level} (X : Premetric-Space l1 l2) where is-uniformly-continuous-map-id-Premetric-Space : is-uniformly-continuous-map-Premetric-Space X X id is-uniformly-continuous-map-id-Premetric-Space = intro-exists id (λ _ _ _ → id)
The composition of uniformly continuous functions is uniformly continuous
module _ {l1 l2 l3 l4 l5 l6 : Level} (X : Premetric-Space l1 l2) (Y : Premetric-Space l3 l4) (Z : Premetric-Space l5 l6) (f : map-type-Premetric-Space Y Z) (g : map-type-Premetric-Space X Y) where is-uniformly-continuous-map-comp-Premetric-Space : is-uniformly-continuous-map-Premetric-Space Y Z f → is-uniformly-continuous-map-Premetric-Space X Y g → is-uniformly-continuous-map-Premetric-Space X Z (f ∘ g) is-uniformly-continuous-map-comp-Premetric-Space H K = do mf , is-modulus-uniform-mf ← H mg , is-modulus-uniform-mg ← K intro-exists ( mg ∘ mf) ( λ x ε x' → is-modulus-uniform-mf (g x) ε (g x') ∘ is-modulus-uniform-mg x (mf ε) x') where open do-syntax-trunc-Prop ( is-uniformly-continuous-map-prop-Premetric-Space X Z (f ∘ g))
External links
- Uniform continuity at Wikidata
Recent changes
- 2025-03-30. Louis Wasserman. Continuity of functions between metric spaces (#1375).