Saturated complete metric spaces
Content created by malarbol.
Created on 2025-05-01.
Last modified on 2025-05-01.
module metric-spaces.saturated-complete-metric-spaces where
Imports
open import foundation.dependent-pair-types open import foundation.propositions open import foundation.subtypes open import foundation.universe-levels open import metric-spaces.cauchy-approximations-metric-spaces open import metric-spaces.complete-metric-spaces open import metric-spaces.convergent-cauchy-approximations-metric-spaces open import metric-spaces.metric-spaces open import metric-spaces.saturated-metric-spaces
Idea
A metric space is saturated and complete¶, or saturated complete, if it is complete and saturated.
Definitions
The property of being a saturated complete metric space
module _ {l1 l2 : Level} (A : Metric-Space l1 l2) where is-saturated-complete-prop-Metric-Space : Prop (l1 ⊔ l2) is-saturated-complete-prop-Metric-Space = product-Prop ( is-complete-prop-Metric-Space A) ( is-saturated-prop-Metric-Space A) is-saturated-complete-Metric-Space : UU (l1 ⊔ l2) is-saturated-complete-Metric-Space = type-Prop is-saturated-complete-prop-Metric-Space is-prop-is-saturated-complete-Metric-Space : is-prop is-saturated-complete-Metric-Space is-prop-is-saturated-complete-Metric-Space = is-prop-type-Prop is-saturated-complete-prop-Metric-Space
The type of saturated complete metric spaces
module _ (l1 l2 : Level) where Saturated-Complete-Metric-Space : UU (lsuc l1 ⊔ lsuc l2) Saturated-Complete-Metric-Space = type-subtype (is-saturated-complete-prop-Metric-Space {l1} {l2})
module _ {l1 l2 : Level} (A : Saturated-Complete-Metric-Space l1 l2) where metric-space-Saturated-Complete-Metric-Space : Metric-Space l1 l2 metric-space-Saturated-Complete-Metric-Space = pr1 A type-Saturated-Complete-Metric-Space : UU l1 type-Saturated-Complete-Metric-Space = type-Metric-Space metric-space-Saturated-Complete-Metric-Space is-complete-metric-space-Saturated-Complete-Metric-Space : is-complete-Metric-Space metric-space-Saturated-Complete-Metric-Space is-complete-metric-space-Saturated-Complete-Metric-Space = pr1 (pr2 A) complete-metric-space-Saturated-Complete-Metric-Space : Complete-Metric-Space l1 l2 complete-metric-space-Saturated-Complete-Metric-Space = metric-space-Saturated-Complete-Metric-Space , is-complete-metric-space-Saturated-Complete-Metric-Space is-saturated-metric-space-Saturated-Complete-Metric-Space : is-saturated-Metric-Space metric-space-Saturated-Complete-Metric-Space is-saturated-metric-space-Saturated-Complete-Metric-Space = pr2 (pr2 A)
The map from Cauchy approximations in a saturated complete metric space to convergent Cauchy approximations
module _ {l1 l2 : Level} (A : Saturated-Complete-Metric-Space l1 l2) where convergent-cauchy-approximation-Saturated-Complete-Metric-Space : cauchy-approximation-Metric-Space ( metric-space-Saturated-Complete-Metric-Space A) → convergent-cauchy-approximation-Metric-Space ( metric-space-Saturated-Complete-Metric-Space A) convergent-cauchy-approximation-Saturated-Complete-Metric-Space u = u , is-complete-metric-space-Saturated-Complete-Metric-Space A u
The limit of a Cauchy approximation in a saturated complete metric space
module _ {l1 l2 : Level} (A : Saturated-Complete-Metric-Space l1 l2) where limit-cauchy-approximation-Saturated-Complete-Metric-Space : cauchy-approximation-Metric-Space ( metric-space-Saturated-Complete-Metric-Space A) → type-Saturated-Complete-Metric-Space A limit-cauchy-approximation-Saturated-Complete-Metric-Space u = limit-convergent-cauchy-approximation-Metric-Space ( metric-space-Saturated-Complete-Metric-Space A) ( convergent-cauchy-approximation-Saturated-Complete-Metric-Space A u)