Premetric structures on types
Content created by Fredrik Bakke and malarbol.
Created on 2024-09-28.
Last modified on 2024-09-28.
module metric-spaces.premetric-structures where
Imports
open import elementary-number-theory.positive-rational-numbers open import foundation.binary-relations open import foundation.dependent-pair-types open import foundation.empty-types open import foundation.equivalences open import foundation.existential-quantification open import foundation.function-extensionality open import foundation.function-types open import foundation.fundamental-theorem-of-identity-types open import foundation.identity-types open import foundation.logical-equivalences open import foundation.negation open import foundation.propositional-extensionality open import foundation.propositions open import foundation.sets open import foundation.subtypes open import foundation.torsorial-type-families open import foundation.transport-along-identifications open import foundation.univalence open import foundation.universe-levels
Idea
A premetric¶ is a type family of proposition-valued binary relations indexed by the positive rational numbers.
Given a premetric B
on A
and some positive rational number d : ℚ⁺
such
that B d x y
holds for some pair of points x y : A
, we interpret d
as an
upper bound¶
on the distance between x
and y
with respect to the premetric.
Definitions
Premetric structures
module _ {l1 : Level} (l2 : Level) (A : UU l1) where Premetric : UU (l1 ⊔ lsuc l2) Premetric = ℚ⁺ → Relation-Prop l2 A
Neighborhood relation in a premetric
Two points x
and y
in a type A
are in a
d
-neighborhood¶
in a premetric B
for some positive rational number d
if B d x y
holds.
In this case, d
is called an
upper bound¶
on the distance between x
and y
in the premetric B
.
module _ {l1 l2 : Level} {A : UU l1} (B : Premetric l2 A) where neighborhood-Premetric : ℚ⁺ → A → A → UU l2 neighborhood-Premetric d = type-Relation-Prop (B d) is-prop-neighborhood-Premetric : (d : ℚ⁺) (x y : A) → is-prop (neighborhood-Premetric d x y) is-prop-neighborhood-Premetric d = is-prop-type-Relation-Prop (B d) is-upper-bound-dist-Premetric : A → A → ℚ⁺ → UU l2 is-upper-bound-dist-Premetric x y d = neighborhood-Premetric d x y is-prop-is-upper-bound-dist-Premetric : (x y : A) (d : ℚ⁺) → is-prop (is-upper-bound-dist-Premetric x y d) is-prop-is-upper-bound-dist-Premetric x y d = is-prop-neighborhood-Premetric d x y
Indistinguishable elements with respect to a premetric
Two elements x
and y
are
indistinguishable¶
in a premetric if x
and y
are d
-neighbors for any positive rational d
,
i.e., if their distance is bounded by any positive rational.
module _ {l1 l2 : Level} {A : UU l1} (B : Premetric l2 A) (x y : A) where is-indistinguishable-prop-Premetric : Prop l2 is-indistinguishable-prop-Premetric = Π-Prop ℚ⁺ (λ (d : ℚ⁺) → B d x y) is-indistinguishable-Premetric : UU l2 is-indistinguishable-Premetric = type-Prop is-indistinguishable-prop-Premetric is-prop-is-indistinguishable-Premetric : is-prop is-indistinguishable-Premetric is-prop-is-indistinguishable-Premetric = is-prop-type-Prop is-indistinguishable-prop-Premetric
Separation relation with respect to a premetric
Two points x
and y
are
separated¶
in a premetric if there exists some positive rational d
such that x
and y
are not d
-neighbors.
module _ {l1 l2 : Level} {A : UU l1} (B : Premetric l2 A) (x y : A) where is-separated-pt-prop-Premetric : Prop l2 is-separated-pt-prop-Premetric = ∃ ℚ⁺ (λ d → neg-Prop (B d x y)) is-separated-pt-Premetric : UU l2 is-separated-pt-Premetric = type-Prop is-separated-pt-prop-Premetric is-prop-is-separated-pt-Premetric : is-prop is-separated-pt-Premetric is-prop-is-separated-pt-Premetric = is-prop-type-Prop is-separated-pt-prop-Premetric
Properties
Points separated by a premetric structure are not indistinguishable
module _ {l1 l2 : Level} {A : UU l1} (B : Premetric l2 A) (x y : A) where is-not-indistinguishable-is-separated-pt-Premetric : is-separated-pt-Premetric B x y → ¬ (is-indistinguishable-Premetric B x y) is-not-indistinguishable-is-separated-pt-Premetric S I = elim-exists ( empty-Prop) ( λ d H → H (I d)) ( S)
Equality of premetric structures
Two premetric structures on a type are equal when they define logically equivalent neighborhoods, or equivalently, when the distances between any two points have the same upper bounds.
module _ {l1 l2 : Level} {A : UU l1} (N : Premetric l2 A) where Eq-prop-Premetric : Premetric l2 A → Prop (l1 ⊔ l2) Eq-prop-Premetric N' = Π-Prop ( ℚ⁺) ( λ d → Π-Prop ( A) ( λ x → Π-Prop ( A) ( λ y → N d x y ⇔ N' d x y))) Eq-Premetric : Premetric l2 A → UU (l1 ⊔ l2) Eq-Premetric N' = type-Prop (Eq-prop-Premetric N') is-prop-Eq-Premetric : (N' : Premetric l2 A) → is-prop (Eq-Premetric N') is-prop-Eq-Premetric N' = is-prop-type-Prop (Eq-prop-Premetric N') refl-Eq-Premetric : Eq-Premetric N refl-Eq-Premetric d x y = id-iff Eq-eq-Premetric : (N' : Premetric l2 A) → (N = N') → Eq-Premetric N' Eq-eq-Premetric .N refl = refl-Eq-Premetric eq-Eq-Premetric : (N' : Premetric l2 A) → Eq-Premetric N' → N = N' eq-Eq-Premetric N' H = eq-htpy ( λ d → eq-htpy ( λ x → eq-htpy ( λ y → eq-iff' (N d x y) (N' d x y) (H d x y)))) is-torsorial-Eq-Premetric : is-torsorial Eq-Premetric is-torsorial-Eq-Premetric = ( N , refl-Eq-Premetric) , ( λ (N' , e) → eq-type-subtype ( Eq-prop-Premetric) ( eq-Eq-Premetric N' e)) is-fiberwise-equiv-Eq-eq-Premetric : (N' : Premetric l2 A) → is-equiv (Eq-eq-Premetric N') is-fiberwise-equiv-Eq-eq-Premetric = fundamental-theorem-id is-torsorial-Eq-Premetric Eq-eq-Premetric equiv-Eq-eq-Premetric : (N' : Premetric l2 A) → (N = N') ≃ (Eq-Premetric N') equiv-Eq-eq-Premetric N' = Eq-eq-Premetric N' , is-fiberwise-equiv-Eq-eq-Premetric N'
Characterization of the transport of premetric structures along equality of types
module _ {l1 l2 : Level} (A : UU l1) where eq-map-eq-tr-Premetric : (B : UU l1) (e : A = B) (S : Premetric l2 A) → Eq-Premetric S (λ d x y → tr (Premetric l2) e S d (map-eq e x) (map-eq e y)) eq-map-eq-tr-Premetric .A refl S = refl-Eq-Premetric S eq-map-inv-eq-tr-Premetric : (B : UU l1) (e : A = B) (S : Premetric l2 A) → Eq-Premetric (tr (Premetric l2) e S) (λ d x y → S d (map-inv-eq e x) (map-inv-eq e y)) eq-map-inv-eq-tr-Premetric .A refl S = refl-Eq-Premetric S
References
Our definition of a premetric follows Definition 4.5.2 from [Boo20].
- [Boo20]
- Auke Bart Booij. Analysis in univalent type theory. PhD thesis, University of Birmingham, 2020. URL: https://etheses.bham.ac.uk/id/eprint/10411/7/Booij20PhD.pdf.
External links
- Booij premetric spaces at Lab.
Recent changes
- 2024-09-28. malarbol and Fredrik Bakke. Metric spaces (#1162).