Saturated metric spaces
Content created by Fredrik Bakke and malarbol.
Created on 2024-09-28.
Last modified on 2024-09-28.
module metric-spaces.saturated-metric-spaces where
Imports
open import elementary-number-theory.positive-rational-numbers open import foundation.binary-relations open import foundation.dependent-pair-types open import foundation.equivalences open import foundation.function-types open import foundation.functoriality-dependent-pair-types open import foundation.identity-types open import foundation.logical-equivalences open import foundation.propositions open import foundation.sets open import foundation.subtypes open import foundation.universe-levels open import metric-spaces.closed-premetric-structures open import metric-spaces.functions-metric-spaces open import metric-spaces.metric-spaces open import metric-spaces.metric-structures open import metric-spaces.premetric-spaces open import metric-spaces.premetric-structures open import metric-spaces.short-functions-metric-spaces
Idea
A metric space is saturated¶ if its premetric is closed.
Definitions
The property of being a saturated metric space
module _ {l1 l2 : Level} (M : Metric-Space l1 l2) where is-saturated-prop-Metric-Space : Prop (l1 ⊔ l2) is-saturated-prop-Metric-Space = is-closed-prop-Premetric (structure-Metric-Space M) is-saturated-Metric-Space : UU (l1 ⊔ l2) is-saturated-Metric-Space = type-Prop is-saturated-prop-Metric-Space is-prop-is-saturated-Metric-Space : is-prop is-saturated-Metric-Space is-prop-is-saturated-Metric-Space = is-prop-type-Prop is-saturated-prop-Metric-Space
Saturation of a metric space
module _ {l1 l2 : Level} (M : Metric-Space l1 l2) where saturate-Metric-Space : Metric-Space l1 l2 pr1 saturate-Metric-Space = type-Metric-Space M , closure-Premetric (structure-Metric-Space M) pr2 saturate-Metric-Space = preserves-is-metric-closure-Premetric ( structure-Metric-Space M) ( is-metric-structure-Metric-Space M)
Properties
The saturation of a metric space is saturated
module _ {l1 l2 : Level} (M : Metric-Space l1 l2) where is-saturated-saturate-Metric-Space : is-saturated-Metric-Space (saturate-Metric-Space M) is-saturated-saturate-Metric-Space = is-closed-closure-Premetric (structure-Metric-Space M)
The identity map between a metric space and its saturation is short
module _ {l1 l2 : Level} (M : Metric-Space l1 l2) where is-short-id-saturate-Metric-Space : is-short-function-Metric-Space ( M) ( saturate-Metric-Space M) ( id) is-short-id-saturate-Metric-Space = leq-closure-monotonic-Premetric ( structure-Metric-Space M) ( is-monotonic-structure-Metric-Space M) short-id-saturate-Metric-Space : short-function-Metric-Space M (saturate-Metric-Space M) short-id-saturate-Metric-Space = id , is-short-id-saturate-Metric-Space
Saturation of metric spaces preserves short maps into saturated metric spaces
module _ {l1 l2 l1' l2' : Level} (M : Metric-Space l1 l2) (M' : Metric-Space l1' l2') (S' : is-saturated-Metric-Space M') (f : map-type-Metric-Space M M') where is-short-saturate-short-function-saturated-Metric-Space : is-short-function-Metric-Space M M' f → is-short-function-Metric-Space (saturate-Metric-Space M) M' f is-short-saturate-short-function-saturated-Metric-Space H d x y I = S' d (f x) (f y) (λ δ → H (d +ℚ⁺ δ) x y (I δ)) is-short-is-short-saturate-function-saturated-Metric-Space : is-short-function-Metric-Space (saturate-Metric-Space M) M' f → is-short-function-Metric-Space M M' f is-short-is-short-saturate-function-saturated-Metric-Space H = is-short-map-short-function-Metric-Space ( M) ( M') ( comp-short-function-Metric-Space ( M) ( saturate-Metric-Space M) ( M') ( f , H) ( short-id-saturate-Metric-Space M)) equiv-saturate-is-short-function-saturated-Metric-Space : (is-short-function-Metric-Space M M' f) ≃ (is-short-function-Metric-Space (saturate-Metric-Space M) M' f) equiv-saturate-is-short-function-saturated-Metric-Space = equiv-iff ( is-short-function-prop-Metric-Space M M' f) ( is-short-function-prop-Metric-Space (saturate-Metric-Space M) M' f) ( is-short-saturate-short-function-saturated-Metric-Space) ( is-short-is-short-saturate-function-saturated-Metric-Space)
module _ {l1 l2 l1' l2' : Level} (M : Metric-Space l1 l2) (M' : Metric-Space l1' l2') (S' : is-saturated-Metric-Space M') where equiv-short-function-saturated-Metric-Space : short-function-Metric-Space M M' ≃ short-function-Metric-Space (saturate-Metric-Space M) M' equiv-short-function-saturated-Metric-Space = equiv-tot (equiv-saturate-is-short-function-saturated-Metric-Space M M' S')
Recent changes
- 2024-09-28. malarbol and Fredrik Bakke. Metric spaces (#1162).