Closed premetric structures
Content created by Fredrik Bakke and malarbol.
Created on 2024-09-28.
Last modified on 2024-09-28.
module metric-spaces.closed-premetric-structures where
Imports
open import elementary-number-theory.addition-rational-numbers open import elementary-number-theory.positive-rational-numbers open import elementary-number-theory.strict-inequality-rational-numbers open import foundation.action-on-identifications-functions open import foundation.binary-relations open import foundation.dependent-pair-types open import foundation.equivalences open import foundation.function-extensionality open import foundation.function-types open import foundation.fundamental-theorem-of-identity-types open import foundation.identity-types open import foundation.logical-equivalences open import foundation.propositional-extensionality open import foundation.propositions open import foundation.sets open import foundation.subtypes open import foundation.torsorial-type-families open import foundation.transport-along-identifications open import foundation.univalence open import foundation.universe-levels open import metric-spaces.extensional-premetric-structures open import metric-spaces.monotonic-premetric-structures open import metric-spaces.ordering-premetric-structures open import metric-spaces.premetric-structures open import metric-spaces.reflexive-premetric-structures open import metric-spaces.symmetric-premetric-structures open import metric-spaces.triangular-premetric-structures
Idea
A premetric on a type A
is
closed¶ if
ε
-neighborhoods satisfy the following condition:
- For any
x y : A
, ifx
andy
are in a(ε + δ)
-neighborhood for all positive rational numbersδ
, then they are in aε
-neighborhood.
Or, equivalently if for any (x y : A)
, the subset of
upper bounds on the distance between
x
and y
is closed on the left:
- For any
ε : ℚ⁺
, ifε + δ
is an upper bound of the distance betweenx
andy
for all(δ : ℚ⁺)
, then so isε
.
Definitions
The property of being a closed premetric
module _ {l1 l2 : Level} {A : UU l1} (B : Premetric l2 A) where is-closed-prop-Premetric : Prop (l1 ⊔ l2) is-closed-prop-Premetric = Π-Prop ( ℚ⁺) ( λ ε → Π-Prop ( A) ( λ x → Π-Prop ( A) ( λ y → hom-Prop ( Π-Prop ( ℚ⁺) ( λ δ → B (ε +ℚ⁺ δ) x y)) ( B ε x y)))) is-closed-Premetric : UU (l1 ⊔ l2) is-closed-Premetric = type-Prop is-closed-prop-Premetric is-prop-is-closed-Premetric : is-prop is-closed-Premetric is-prop-is-closed-Premetric = is-prop-type-Prop is-closed-prop-Premetric
The closure of a premetric
module _ {l1 l2 : Level} {A : UU l1} (B : Premetric l2 A) where closure-Premetric : Premetric l2 A closure-Premetric ε x y = Π-Prop ℚ⁺ (λ δ → B (ε +ℚ⁺ δ) x y)
Properties
The closure of a premetric is closed
module _ {l1 l2 : Level} {A : UU l1} (B : Premetric l2 A) where is-closed-closure-Premetric : is-closed-Premetric (closure-Premetric B) is-closed-closure-Premetric ε x y H δ = tr ( λ d → neighborhood-Premetric B d x y) ( ( associative-add-ℚ⁺ ( ε) ( left-summand-split-ℚ⁺ δ) ( right-summand-split-ℚ⁺ δ)) ∙ ( ap (add-ℚ⁺ ε) (eq-add-split-ℚ⁺ δ))) ( H (left-summand-split-ℚ⁺ δ) (right-summand-split-ℚ⁺ δ))
The closure of a monotonic closed premetric is itself
module _ {l1 l2 : Level} {A : UU l1} (B : Premetric l2 A) (M : is-monotonic-Premetric B) (C : is-closed-Premetric B) where eq-closure-closed-monotonic-Premetric : closure-Premetric B = B eq-closure-closed-monotonic-Premetric = eq-Eq-Premetric ( closure-Premetric B) ( B) ( λ ε x y → ( C ε x y) , ( λ H δ → M x y ε (ε +ℚ⁺ δ) (le-left-add-ℚ⁺ ε δ) H))
Taking the closure of a premetric is idempotent
module _ {l1 l2 : Level} {A : UU l1} (B : Premetric l2 A) where is-idempotent-closure-Premetric : closure-Premetric (closure-Premetric B) = closure-Premetric B is-idempotent-closure-Premetric = antisymmetric-leq-Premetric ( closure-Premetric (closure-Premetric B)) ( closure-Premetric B) ( λ d x y H δ → tr ( λ s → neighborhood-Premetric B s x y) ( ( associative-add-ℚ⁺ ( d) ( left-summand-split-ℚ⁺ δ) ( right-summand-split-ℚ⁺ δ)) ∙ ( ap (add-ℚ⁺ d) (eq-add-split-ℚ⁺ δ))) ( H (left-summand-split-ℚ⁺ δ) (right-summand-split-ℚ⁺ δ))) ( λ d x y H δ₁ δ₂ → inv-tr ( λ s → neighborhood-Premetric B s x y) ( associative-add-ℚ⁺ d δ₁ δ₂) ( H (δ₁ +ℚ⁺ δ₂)))
Indistiguishable elements in the closure of a premetric are indistinguishable
module _ {l1 l2 : Level} {A : UU l1} (B : Premetric l2 A) (x y : A) where is-indistinguishable-is-indistinguishable-closure-Premetric : is-indistinguishable-Premetric (closure-Premetric B) x y → is-indistinguishable-Premetric B x y is-indistinguishable-is-indistinguishable-closure-Premetric H ε = tr ( λ d → neighborhood-Premetric B d x y) ( eq-add-split-ℚ⁺ ε) ( H (left-summand-split-ℚ⁺ ε) (right-summand-split-ℚ⁺ ε))
Indistiguishable elements in a premetric are indistinguishable in its closure
module _ {l1 l2 : Level} {A : UU l1} (B : Premetric l2 A) (x y : A) where is-indistinguishable-closure-is-indistinguishable-Premetric : is-indistinguishable-Premetric B x y → is-indistinguishable-Premetric (closure-Premetric B) x y is-indistinguishable-closure-is-indistinguishable-Premetric H ε δ = H (ε +ℚ⁺ δ)
Indistiguishability in a premetric or its closure are equal
module _ {l1 l2 : Level} {A : UU l1} (B : Premetric l2 A) (x y : A) where eq-indistinguishable-prop-closure-Premetric : is-indistinguishable-prop-Premetric B x y = is-indistinguishable-prop-Premetric (closure-Premetric B) x y eq-indistinguishable-prop-closure-Premetric = eq-iff ( is-indistinguishable-closure-is-indistinguishable-Premetric B x y) ( is-indistinguishable-is-indistinguishable-closure-Premetric B x y) eq-indistinguishable-closure-Premetric : is-indistinguishable-Premetric B x y = is-indistinguishable-Premetric (closure-Premetric B) x y eq-indistinguishable-closure-Premetric = ap type-Prop eq-indistinguishable-prop-closure-Premetric
The closure of a reflexive premetric is reflexive
module _ {l1 l2 : Level} {A : UU l1} (B : Premetric l2 A) (R : is-reflexive-Premetric B) where is-reflexive-closure-Premetric : is-reflexive-Premetric (closure-Premetric B) is-reflexive-closure-Premetric ε x δ = R (ε +ℚ⁺ δ) x
The closure of a symmetric premetric is symmetric
module _ {l1 l2 : Level} {A : UU l1} (B : Premetric l2 A) (S : is-symmetric-Premetric B) where is-symmetric-closure-Premetric : is-symmetric-Premetric (closure-Premetric B) is-symmetric-closure-Premetric ε x y H δ = S (ε +ℚ⁺ δ) x y (H δ)
The closure of a local premetric is local
module _ {l1 l2 : Level} {A : UU l1} (B : Premetric l2 A) (L : is-local-Premetric B) where is-local-closure-Premetric : is-local-Premetric (closure-Premetric B) is-local-closure-Premetric x = tr ( λ S → is-prop (Σ A S)) ( eq-htpy (eq-indistinguishable-closure-Premetric B x)) ( L x)
The closure of a monotonic premetric is monotonic
module _ {l1 l2 : Level} {A : UU l1} (B : Premetric l2 A) (M : is-monotonic-Premetric B) where is-monotonic-closure-Premetric : is-monotonic-Premetric (closure-Premetric B) is-monotonic-closure-Premetric x y d₁ d₂ I H δ = M ( x) ( y) ( d₁ +ℚ⁺ δ) ( d₂ +ℚ⁺ δ) ( preserves-le-left-add-ℚ ( rational-ℚ⁺ δ) ( rational-ℚ⁺ d₁) ( rational-ℚ⁺ d₂) ( I)) ( H δ)
The closure of a triangular premetric is triangular
module _ {l1 l2 : Level} {A : UU l1} (B : Premetric l2 A) (T : is-triangular-Premetric B) where is-triangular-closure-Premetric : is-triangular-Premetric (closure-Premetric B) is-triangular-closure-Premetric x y z d₁ d₂ H K δ = tr ( λ s → neighborhood-Premetric B s x z) ( ( interchange-law-add-add-ℚ⁺ ( d₁) ( left-summand-split-ℚ⁺ δ) ( d₂) ( right-summand-split-ℚ⁺ δ)) ∙ ( ap (add-ℚ⁺ (d₁ +ℚ⁺ d₂)) (eq-add-split-ℚ⁺ δ))) ( T ( x) ( y) ( z) ( d₁ +ℚ⁺ left-summand-split-ℚ⁺ δ) ( d₂ +ℚ⁺ right-summand-split-ℚ⁺ δ) ( H (right-summand-split-ℚ⁺ δ)) ( K (left-summand-split-ℚ⁺ δ)))
The closure of a tight premetric is tight
module _ {l1 l2 : Level} {A : UU l1} (B : Premetric l2 A) (T : is-tight-Premetric B) where is-tight-closure-Premetric : is-tight-Premetric (closure-Premetric B) is-tight-closure-Premetric x y = T x y ∘ is-indistinguishable-is-indistinguishable-closure-Premetric B x y
The closure operation preserves the ordering on premetric structures
module _ {l1 l2 : Level} {A : UU l1} (B B' : Premetric l2 A) where preserves-leq-closure-Premetric : leq-Premetric B B' → leq-Premetric (closure-Premetric B) (closure-Premetric B') preserves-leq-closure-Premetric H ε x y I δ = H (ε +ℚ⁺ δ) x y (I δ)
The closure of a monotonic premetric is coarser than it
module _ {l1 l2 : Level} {A : UU l1} (B : Premetric l2 A) (M : is-monotonic-Premetric B) where leq-closure-monotonic-Premetric : leq-Premetric B (closure-Premetric B) leq-closure-monotonic-Premetric ε x y H δ = M x y ε (ε +ℚ⁺ δ) (le-left-add-ℚ⁺ ε δ) H
The closure of a premetric is finer that all monotonic closed premetrics coarser than it
module _ {l1 l2 : Level} {A : UU l1} (B B' : Premetric l2 A) (M : is-monotonic-Premetric B') (C : is-closed-Premetric B') (I : leq-Premetric B B') where leq-closure-leq-closed-monotonic-Premetric : leq-Premetric (closure-Premetric B) B' leq-closure-leq-closed-monotonic-Premetric = tr ( leq-Premetric (closure-Premetric B)) ( eq-closure-closed-monotonic-Premetric B' M C) ( preserves-leq-closure-Premetric B B' I)
Recent changes
- 2024-09-28. malarbol and Fredrik Bakke. Metric spaces (#1162).