Metric structures
Content created by Fredrik Bakke and malarbol.
Created on 2024-09-28.
Last modified on 2024-09-28.
module metric-spaces.metric-structures where
Imports
open import foundation.dependent-pair-types open import foundation.function-types open import foundation.logical-equivalences open import foundation.propositions open import foundation.universe-levels open import metric-spaces.closed-premetric-structures open import metric-spaces.extensional-premetric-structures open import metric-spaces.monotonic-premetric-structures open import metric-spaces.ordering-premetric-structures open import metric-spaces.premetric-structures open import metric-spaces.pseudometric-structures open import metric-spaces.reflexive-premetric-structures open import metric-spaces.symmetric-premetric-structures open import metric-spaces.triangular-premetric-structures
Idea
A premetric structure is a metric¶ if it is an extensional pseudometric. I.e., if the neighborhood relation is reflexive, symmetric, triangular, and local.
Definitions
The property of being a metric premetric structure
module _ {l1 l2 : Level} {A : UU l1} (B : Premetric l2 A) where is-metric-prop-Premetric : Prop (l1 ⊔ l2) is-metric-prop-Premetric = product-Prop ( is-pseudometric-prop-Premetric B) ( is-local-prop-Premetric B) is-metric-Premetric : UU (l1 ⊔ l2) is-metric-Premetric = type-Prop is-metric-prop-Premetric is-prop-is-metric-Premetric : is-prop is-metric-Premetric is-prop-is-metric-Premetric = is-prop-type-Prop is-metric-prop-Premetric
module _ {l1 l2 : Level} {A : UU l1} (B : Premetric l2 A) (M : is-metric-Premetric B) where is-pseudometric-is-metric-Premetric : is-pseudometric-Premetric B is-pseudometric-is-metric-Premetric = pr1 M is-reflexive-is-metric-Premetric : is-reflexive-Premetric B is-reflexive-is-metric-Premetric = is-reflexive-is-pseudometric-Premetric B is-pseudometric-is-metric-Premetric is-symmetric-is-metric-Premetric : is-symmetric-Premetric B is-symmetric-is-metric-Premetric = is-symmetric-is-pseudometric-Premetric B is-pseudometric-is-metric-Premetric is-triangular-is-metric-Premetric : is-triangular-Premetric B is-triangular-is-metric-Premetric = is-triangular-is-pseudometric-Premetric B is-pseudometric-is-metric-Premetric is-local-is-metric-Premetric : is-local-Premetric B is-local-is-metric-Premetric = pr2 M is-monotonic-is-metric-Premetric : is-monotonic-Premetric B is-monotonic-is-metric-Premetric = is-monotonic-is-reflexive-triangular-Premetric B is-reflexive-is-metric-Premetric is-triangular-is-metric-Premetric
Properties
The closure of a metric structure is metric
module _ {l1 l2 : Level} {A : UU l1} (B : Premetric l2 A) (M : is-metric-Premetric B) where preserves-is-metric-closure-Premetric : is-metric-Premetric (closure-Premetric B) preserves-is-metric-closure-Premetric = ( preserves-is-pseudometric-closure-Premetric ( B) ( is-pseudometric-is-metric-Premetric B M)) , ( is-local-closure-Premetric ( B) ( is-local-is-metric-Premetric B M))
The closure of a metric structure is the finest closed metric coarser than it
module _ {l1 l2 : Level} {A : UU l1} (B : Premetric l2 A) (M : is-metric-Premetric B) where leq-closure-is-metric-Premetric : leq-Premetric B (closure-Premetric B) leq-closure-is-metric-Premetric = leq-closure-monotonic-Premetric ( B) ( is-monotonic-is-metric-Premetric B M) leq-closure-closed-is-metric-Premetric : (B' : Premetric l2 A) → is-metric-Premetric B' → is-closed-Premetric B' → leq-Premetric B B' → leq-Premetric (closure-Premetric B) B' leq-closure-closed-is-metric-Premetric B' = leq-closure-leq-closed-monotonic-Premetric B B' ∘ is-monotonic-is-metric-Premetric B'
Recent changes
- 2024-09-28. malarbol and Fredrik Bakke. Metric spaces (#1162).