Pseudometric structures on a type
Content created by Fredrik Bakke and malarbol.
Created on 2024-09-28.
Last modified on 2024-09-28.
module metric-spaces.pseudometric-structures where
Imports
open import foundation.dependent-pair-types open import foundation.identity-types open import foundation.propositions open import foundation.universe-levels open import metric-spaces.closed-premetric-structures open import metric-spaces.discrete-premetric-structures open import metric-spaces.extensional-premetric-structures open import metric-spaces.monotonic-premetric-structures open import metric-spaces.premetric-structures open import metric-spaces.reflexive-premetric-structures open import metric-spaces.symmetric-premetric-structures open import metric-spaces.triangular-premetric-structures
Idea
A premetric is a pseudometric¶ if it is reflexive, symmetric, and triangular.
Definitions
The property of being a pseudometric premetric
module _ {l1 l2 : Level} {A : UU l1} (B : Premetric l2 A) where is-pseudometric-prop-Premetric : Prop (l1 ⊔ l2) is-pseudometric-prop-Premetric = product-Prop ( is-reflexive-prop-Premetric B) ( product-Prop ( is-symmetric-prop-Premetric B) ( is-triangular-prop-Premetric B)) is-pseudometric-Premetric : UU (l1 ⊔ l2) is-pseudometric-Premetric = type-Prop is-pseudometric-prop-Premetric is-prop-is-pseudometric-Premetric : is-prop is-pseudometric-Premetric is-prop-is-pseudometric-Premetric = is-prop-type-Prop is-pseudometric-prop-Premetric
module _ {l1 l2 : Level} {A : UU l1} (B : Premetric l2 A) (P : is-pseudometric-Premetric B) where is-reflexive-is-pseudometric-Premetric : is-reflexive-Premetric B is-reflexive-is-pseudometric-Premetric = pr1 P is-symmetric-is-pseudometric-Premetric : is-symmetric-Premetric B is-symmetric-is-pseudometric-Premetric = pr1 (pr2 P) is-triangular-is-pseudometric-Premetric : is-triangular-Premetric B is-triangular-is-pseudometric-Premetric = pr2 (pr2 P)
Properties
The discrete premetric on a type is a pseudometric
module _ {l : Level} {A : UU l} where is-pseudometric-discrete-Premetric : is-pseudometric-Premetric (premetric-discrete-Premetric A) is-pseudometric-discrete-Premetric = is-reflexive-premetric-Discrete-Premetric (discrete-Premetric A) , is-symmetric-discrete-Premetric A , is-triangular-discrete-Premetric A
The closure of a pseudometric structure is pseudometric
module _ {l1 l2 : Level} {A : UU l1} (B : Premetric l2 A) (M : is-pseudometric-Premetric B) where preserves-is-pseudometric-closure-Premetric : is-pseudometric-Premetric (closure-Premetric B) preserves-is-pseudometric-closure-Premetric = ( is-reflexive-closure-Premetric ( B) ( is-reflexive-is-pseudometric-Premetric B M)) , ( is-symmetric-closure-Premetric ( B) ( is-symmetric-is-pseudometric-Premetric B M)) , ( is-triangular-closure-Premetric ( B) ( is-triangular-is-pseudometric-Premetric B M))
See also
- Metric structures are defined in
metric-spaces.metric-structures
.
Recent changes
- 2024-09-28. malarbol and Fredrik Bakke. Metric spaces (#1162).