Short functions between premetric spaces
Content created by Fredrik Bakke and malarbol.
Created on 2024-09-28.
Last modified on 2024-09-28.
module metric-spaces.short-functions-premetric-spaces where
Imports
open import elementary-number-theory.positive-rational-numbers open import foundation.dependent-pair-types open import foundation.equivalences open import foundation.existential-quantification open import foundation.function-extensionality open import foundation.function-types open import foundation.homotopies open import foundation.identity-types open import foundation.logical-equivalences open import foundation.propositional-truncations open import foundation.propositions open import foundation.sequences open import foundation.sets open import foundation.subtypes open import foundation.universe-levels open import metric-spaces.isometries-premetric-spaces open import metric-spaces.premetric-spaces
Idea
A function f
between premetric spaces is
short¶
if any of the following three equivalent
propositions holds:
- it maps
d
-neighborhoods tod
-neighborhoods; - any upper bound on the distance between two elements also bounds the distance between their image;
- the premetric on the domain of
f
is finer than the preimage of the premetric on its domain byf
.
Definitions
The property of being a short function between premetric spaces
module _ {l1 l2 l1' l2' : Level} (A : Premetric-Space l1 l2) (B : Premetric-Space l1' l2') (f : map-type-Premetric-Space A B) where is-short-function-prop-Premetric-Space : Prop (l1 ⊔ l2 ⊔ l2') is-short-function-prop-Premetric-Space = Π-Prop ( ℚ⁺) ( λ d → Π-Prop ( type-Premetric-Space A) ( λ x → Π-Prop ( type-Premetric-Space A) ( λ y → hom-Prop ( structure-Premetric-Space A d x y) ( structure-Premetric-Space B d (f x) (f y))))) is-short-function-Premetric-Space : UU (l1 ⊔ l2 ⊔ l2') is-short-function-Premetric-Space = type-Prop is-short-function-prop-Premetric-Space is-prop-is-short-function-Premetric-Space : is-prop is-short-function-Premetric-Space is-prop-is-short-function-Premetric-Space = is-prop-type-Prop is-short-function-prop-Premetric-Space
The type of short functions between premetric spaces
module _ {l1 l2 l1' l2' : Level} (A : Premetric-Space l1 l2) (B : Premetric-Space l1' l2') where short-function-Premetric-Space : UU (l1 ⊔ l2 ⊔ l1' ⊔ l2') short-function-Premetric-Space = type-subtype (is-short-function-prop-Premetric-Space A B) module _ {l1 l2 l1' l2' : Level} (A : Premetric-Space l1 l2) (B : Premetric-Space l1' l2') (f : short-function-Premetric-Space A B) where map-short-function-Premetric-Space : map-type-Premetric-Space A B map-short-function-Premetric-Space = pr1 f is-short-map-short-function-Premetric-Space : is-short-function-Premetric-Space A B map-short-function-Premetric-Space is-short-map-short-function-Premetric-Space = pr2 f
Properties
The identity function on a metric space is short
module _ {l1 l2 : Level} (A : Premetric-Space l1 l2) where is-short-id-Premetric-Space : is-short-function-Premetric-Space A A (id-Premetric-Space A) is-short-id-Premetric-Space d x y = id short-id-Premetric-Space : short-function-Premetric-Space A A short-id-Premetric-Space = id-Premetric-Space A , is-short-id-Premetric-Space
Equality of short functions between premetric spaces is characterized by homotopy between their carrier maps
module _ {l1 l2 l1' l2' : Level} (A : Premetric-Space l1 l2) (B : Premetric-Space l1' l2') (f g : short-function-Premetric-Space A B) where equiv-eq-htpy-map-short-function-Premetric-Space : ( f = g) ≃ ( map-short-function-Premetric-Space A B f ~ map-short-function-Premetric-Space A B g) equiv-eq-htpy-map-short-function-Premetric-Space = equiv-funext ∘e extensionality-type-subtype' ( is-short-function-prop-Premetric-Space A B) f g eq-htpy-map-short-function-Premetric-Space : ( map-short-function-Premetric-Space A B f ~ map-short-function-Premetric-Space A B g) → ( f = g) eq-htpy-map-short-function-Premetric-Space = map-inv-equiv equiv-eq-htpy-map-short-function-Premetric-Space
Composition of short maps between premetric spaces
module _ {l1a l2a l1b l2b l1c l2c : Level} (A : Premetric-Space l1a l2a) (B : Premetric-Space l1b l2b) (C : Premetric-Space l1c l2c) (g : map-type-Premetric-Space B C) (f : map-type-Premetric-Space A B) where is-short-comp-function-Premetric-Space : is-short-function-Premetric-Space B C g → is-short-function-Premetric-Space A B f → is-short-function-Premetric-Space A C (g ∘ f) is-short-comp-function-Premetric-Space H K d x y = H d (f x) (f y) ∘ K d x y module _ {l1a l2a l1b l2b l1c l2c : Level} (A : Premetric-Space l1a l2a) (B : Premetric-Space l1b l2b) (C : Premetric-Space l1c l2c) (g : short-function-Premetric-Space B C) (f : short-function-Premetric-Space A B) where comp-short-function-Premetric-Space : short-function-Premetric-Space A C pr1 comp-short-function-Premetric-Space = map-short-function-Premetric-Space B C g ∘ map-short-function-Premetric-Space A B f pr2 comp-short-function-Premetric-Space = is-short-comp-function-Premetric-Space ( A) ( B) ( C) ( map-short-function-Premetric-Space B C g) ( map-short-function-Premetric-Space A B f) ( is-short-map-short-function-Premetric-Space B C g) ( is-short-map-short-function-Premetric-Space A B f)
Any isometry between premetric spaces is short
module _ {l1 l2 l1' l2' : Level} (A : Premetric-Space l1 l2) (B : Premetric-Space l1' l2') (f : map-type-Premetric-Space A B) where is-short-is-isometry-Premetric-Space : is-isometry-Premetric-Space A B f → is-short-function-Premetric-Space A B f is-short-is-isometry-Premetric-Space H d x y = forward-implication (H d x y)
External links
- Short maps at Lab
- Metric maps at Wikipedia
Recent changes
- 2024-09-28. malarbol and Fredrik Bakke. Metric spaces (#1162).