Limits of sequences in pseudometric spaces

Content created by malarbol.

Created on 2025-05-01.
Last modified on 2025-05-01.

module metric-spaces.limits-of-sequences-pseudometric-spaces where
Imports
open import elementary-number-theory.inequality-natural-numbers
open import elementary-number-theory.maximum-natural-numbers
open import elementary-number-theory.natural-numbers
open import elementary-number-theory.positive-rational-numbers

open import foundation.constant-maps
open import foundation.dependent-pair-types
open import foundation.functoriality-dependent-pair-types
open import foundation.inhabited-subtypes
open import foundation.inhabited-types
open import foundation.propositional-truncations
open import foundation.propositions
open import foundation.sequences
open import foundation.subsequences
open import foundation.subtypes
open import foundation.transport-along-identifications
open import foundation.universe-levels

open import metric-spaces.limits-of-sequences-premetric-spaces
open import metric-spaces.pseudometric-spaces
open import metric-spaces.sequences-pseudometric-spaces

Ideas

Limits of sequences in pseudometric spaces are limits in the underlying premetric space: there exists a function m : ℚ⁺ → ℕ such that whenever m ε ≤ n in , u n is in an ε-neighborhood of l.

Limits of a sequence in a pseudometric space are indistinguishable. The value of a constant sequence in a pseudometric space is its limit.

Definition

Limits of sequences in a pseudometric space

module _
  {l1 l2 : Level} (M : Pseudometric-Space l1 l2)
  (u : sequence-type-Pseudometric-Space M)
  (lim : type-Pseudometric-Space M)
  where

  is-limit-modulus-prop-sequence-Pseudometric-Space : (ℚ⁺  )  Prop l2
  is-limit-modulus-prop-sequence-Pseudometric-Space =
    is-limit-modulus-prop-sequence-Premetric-Space
      ( premetric-Pseudometric-Space M)
      ( u)
      ( lim)

  is-limit-modulus-sequence-Pseudometric-Space : (ℚ⁺  )  UU l2
  is-limit-modulus-sequence-Pseudometric-Space m =
    type-Prop (is-limit-modulus-prop-sequence-Pseudometric-Space m)

  limit-modulus-sequence-Pseudometric-Space : UU l2
  limit-modulus-sequence-Pseudometric-Space =
    type-subtype is-limit-modulus-prop-sequence-Pseudometric-Space

  modulus-limit-modulus-sequence-Pseudometric-Space :
    limit-modulus-sequence-Pseudometric-Space  ℚ⁺  
  modulus-limit-modulus-sequence-Pseudometric-Space m = pr1 m

  is-modulus-limit-modulus-sequence-Pseudometric-Space :
    (m : limit-modulus-sequence-Pseudometric-Space) 
    is-limit-modulus-sequence-Pseudometric-Space
      (modulus-limit-modulus-sequence-Pseudometric-Space m)
  is-modulus-limit-modulus-sequence-Pseudometric-Space m = pr2 m

  is-limit-prop-sequence-Pseudometric-Space : Prop l2
  is-limit-prop-sequence-Pseudometric-Space =
    is-inhabited-subtype-Prop is-limit-modulus-prop-sequence-Pseudometric-Space

  is-limit-sequence-Pseudometric-Space : UU l2
  is-limit-sequence-Pseudometric-Space =
    type-Prop is-limit-prop-sequence-Pseudometric-Space

Properties

The value of a constant sequence in a pseudometric space is its limit

module _
  {l1 l2 : Level} (M : Pseudometric-Space l1 l2) (x : type-Pseudometric-Space M)
  where

  limit-modulus-constant-sequence-Pseudometric-Space :
    limit-modulus-sequence-Pseudometric-Space M (const  x) x
  limit-modulus-constant-sequence-Pseudometric-Space =
    ( λ _  zero-ℕ) ,
    ( λ ε _ _  is-reflexive-structure-Pseudometric-Space M ε x)

  limit-constant-sequence-Pseudometric-Space :
    is-limit-sequence-Pseudometric-Space M (const  x) x
  limit-constant-sequence-Pseudometric-Space =
    unit-trunc-Prop limit-modulus-constant-sequence-Pseudometric-Space

Two limits of a sequence in a pseudometric space are indistinguishable

module _
  {l1 l2 : Level} (M : Pseudometric-Space l1 l2)
  (u : sequence-type-Pseudometric-Space M)
  (x y : type-Pseudometric-Space M)
  where

  indistinguishable-limit-limit-modulus-sequence-Pseudometric-Space :
    limit-modulus-sequence-Pseudometric-Space M u x 
    limit-modulus-sequence-Pseudometric-Space M u y 
    is-indistinguishable-Pseudometric-Space M x y
  indistinguishable-limit-limit-modulus-sequence-Pseudometric-Space mx my ε =
    tr
      ( is-upper-bound-dist-Pseudometric-Space M x y)
      ( eq-add-split-ℚ⁺ ε)
      ( tr-modulus-indistinguishable
        ( left-summand-split-ℚ⁺ ε)
        ( right-summand-split-ℚ⁺ ε)
        ( ( modulus-limit-modulus-sequence-Pseudometric-Space
            ( M)
            ( u)
            ( x)
            ( mx)
            ( left-summand-split-ℚ⁺ ε)) ,
          ( is-modulus-limit-modulus-sequence-Pseudometric-Space
            ( M)
            ( u)
            ( x)
            ( mx)
            ( left-summand-split-ℚ⁺ ε)))
        ( ( modulus-limit-modulus-sequence-Pseudometric-Space
            ( M)
            ( u)
            ( y)
            ( my)
            ( right-summand-split-ℚ⁺ ε)) ,
          ( is-modulus-limit-modulus-sequence-Pseudometric-Space
            ( M)
            ( u)
            ( y)
            ( my)
            ( right-summand-split-ℚ⁺ ε))))
    where
      tr-modulus-indistinguishable :
        (d₁ d₂ : ℚ⁺) 
        Σ ( )
          ( λ N 
            (n : ) 
            leq-ℕ N n 
            neighborhood-Pseudometric-Space M d₁ (u n) x) 
        Σ ( )
          ( λ N 
            (n : ) 
            leq-ℕ N n 
            neighborhood-Pseudometric-Space M d₂ (u n) y) 
        neighborhood-Pseudometric-Space M (d₁ +ℚ⁺ d₂) x y
      tr-modulus-indistinguishable d₁ d₂ (Nx , Mx) (Ny , My) =
        ( is-triangular-structure-Pseudometric-Space M
          ( x)
          ( u (max-ℕ Nx Ny))
          ( y)
          ( d₁)
          ( d₂)
          ( My (max-ℕ Nx Ny) (right-leq-max-ℕ Nx Ny))
          ( is-symmetric-structure-Pseudometric-Space M d₁
            ( u (max-ℕ Nx Ny))
            ( x)
            ( Mx (max-ℕ Nx Ny) (left-leq-max-ℕ Nx Ny))))

  indistinguishable-limit-sequence-Pseudometric-Space :
    is-limit-sequence-Pseudometric-Space M u x 
    is-limit-sequence-Pseudometric-Space M u y 
    is-indistinguishable-Pseudometric-Space M x y
  indistinguishable-limit-sequence-Pseudometric-Space Lx Ly =
    rec-trunc-Prop
      ( is-indistinguishable-prop-Pseudometric-Space M x y)
      ( λ My 
        rec-trunc-Prop
          ( Π-Prop ℚ⁺  d  structure-Pseudometric-Space M d x y))
          ( λ Mx 
            indistinguishable-limit-limit-modulus-sequence-Pseudometric-Space
              Mx
              My)
          ( Lx))
      ( Ly)

Taking subsequences preserves limits in pseudometric spaces

module _
  {l1 l2 : Level} (M : Pseudometric-Space l1 l2)
  (u : sequence-type-Pseudometric-Space M)
  (v : subsequence u)
  (lim : type-Pseudometric-Space M)
  where

  modulus-subsequence-limit-modulus-sequence-Premetric-Space :
    limit-modulus-sequence-Pseudometric-Space M u lim 
    limit-modulus-sequence-Pseudometric-Space
      ( M)
      ( seq-subsequence u v)
      ( lim)
  modulus-subsequence-limit-modulus-sequence-Premetric-Space =
    tot
      ( λ m is-modulus d n H 
        is-modulus
          ( d)
          ( extract-subsequence u v n)
          ( transitive-leq-ℕ
            ( m d)
            ( n)
            ( extract-subsequence u v n)
            ( is-superlinear-extract-subsequence u v n)
            ( H)))

  preserves-limit-subsequence-Pseudometric-Space :
    is-limit-sequence-Pseudometric-Space M u lim 
    is-limit-sequence-Pseudometric-Space M (seq-subsequence u v) lim
  preserves-limit-subsequence-Pseudometric-Space =
    map-is-inhabited modulus-subsequence-limit-modulus-sequence-Premetric-Space

Recent changes