Limits of sequences in pseudometric spaces
Content created by malarbol.
Created on 2025-05-01.
Last modified on 2025-05-01.
module metric-spaces.limits-of-sequences-pseudometric-spaces where
Imports
open import elementary-number-theory.inequality-natural-numbers open import elementary-number-theory.maximum-natural-numbers open import elementary-number-theory.natural-numbers open import elementary-number-theory.positive-rational-numbers open import foundation.constant-maps open import foundation.dependent-pair-types open import foundation.functoriality-dependent-pair-types open import foundation.inhabited-subtypes open import foundation.inhabited-types open import foundation.propositional-truncations open import foundation.propositions open import foundation.sequences open import foundation.subsequences open import foundation.subtypes open import foundation.transport-along-identifications open import foundation.universe-levels open import metric-spaces.limits-of-sequences-premetric-spaces open import metric-spaces.pseudometric-spaces open import metric-spaces.sequences-pseudometric-spaces
Ideas
Limits¶
of
sequences in pseudometric spaces
are limits in the
underlying premetric space: there exists a
function m : ℚ⁺ → ℕ
such that whenever m ε ≤ n
in ℕ
, u n
is in an
ε
-neighborhood of l
.
Limits of a sequence in a pseudometric space are indistinguishable. The value of a constant sequence in a pseudometric space is its limit.
Definition
Limits of sequences in a pseudometric space
module _ {l1 l2 : Level} (M : Pseudometric-Space l1 l2) (u : sequence-type-Pseudometric-Space M) (lim : type-Pseudometric-Space M) where is-limit-modulus-prop-sequence-Pseudometric-Space : (ℚ⁺ → ℕ) → Prop l2 is-limit-modulus-prop-sequence-Pseudometric-Space = is-limit-modulus-prop-sequence-Premetric-Space ( premetric-Pseudometric-Space M) ( u) ( lim) is-limit-modulus-sequence-Pseudometric-Space : (ℚ⁺ → ℕ) → UU l2 is-limit-modulus-sequence-Pseudometric-Space m = type-Prop (is-limit-modulus-prop-sequence-Pseudometric-Space m) limit-modulus-sequence-Pseudometric-Space : UU l2 limit-modulus-sequence-Pseudometric-Space = type-subtype is-limit-modulus-prop-sequence-Pseudometric-Space modulus-limit-modulus-sequence-Pseudometric-Space : limit-modulus-sequence-Pseudometric-Space → ℚ⁺ → ℕ modulus-limit-modulus-sequence-Pseudometric-Space m = pr1 m is-modulus-limit-modulus-sequence-Pseudometric-Space : (m : limit-modulus-sequence-Pseudometric-Space) → is-limit-modulus-sequence-Pseudometric-Space (modulus-limit-modulus-sequence-Pseudometric-Space m) is-modulus-limit-modulus-sequence-Pseudometric-Space m = pr2 m is-limit-prop-sequence-Pseudometric-Space : Prop l2 is-limit-prop-sequence-Pseudometric-Space = is-inhabited-subtype-Prop is-limit-modulus-prop-sequence-Pseudometric-Space is-limit-sequence-Pseudometric-Space : UU l2 is-limit-sequence-Pseudometric-Space = type-Prop is-limit-prop-sequence-Pseudometric-Space
Properties
The value of a constant sequence in a pseudometric space is its limit
module _ {l1 l2 : Level} (M : Pseudometric-Space l1 l2) (x : type-Pseudometric-Space M) where limit-modulus-constant-sequence-Pseudometric-Space : limit-modulus-sequence-Pseudometric-Space M (const ℕ x) x limit-modulus-constant-sequence-Pseudometric-Space = ( λ _ → zero-ℕ) , ( λ ε _ _ → is-reflexive-structure-Pseudometric-Space M ε x) limit-constant-sequence-Pseudometric-Space : is-limit-sequence-Pseudometric-Space M (const ℕ x) x limit-constant-sequence-Pseudometric-Space = unit-trunc-Prop limit-modulus-constant-sequence-Pseudometric-Space
Two limits of a sequence in a pseudometric space are indistinguishable
module _ {l1 l2 : Level} (M : Pseudometric-Space l1 l2) (u : sequence-type-Pseudometric-Space M) (x y : type-Pseudometric-Space M) where indistinguishable-limit-limit-modulus-sequence-Pseudometric-Space : limit-modulus-sequence-Pseudometric-Space M u x → limit-modulus-sequence-Pseudometric-Space M u y → is-indistinguishable-Pseudometric-Space M x y indistinguishable-limit-limit-modulus-sequence-Pseudometric-Space mx my ε = tr ( is-upper-bound-dist-Pseudometric-Space M x y) ( eq-add-split-ℚ⁺ ε) ( tr-modulus-indistinguishable ( left-summand-split-ℚ⁺ ε) ( right-summand-split-ℚ⁺ ε) ( ( modulus-limit-modulus-sequence-Pseudometric-Space ( M) ( u) ( x) ( mx) ( left-summand-split-ℚ⁺ ε)) , ( is-modulus-limit-modulus-sequence-Pseudometric-Space ( M) ( u) ( x) ( mx) ( left-summand-split-ℚ⁺ ε))) ( ( modulus-limit-modulus-sequence-Pseudometric-Space ( M) ( u) ( y) ( my) ( right-summand-split-ℚ⁺ ε)) , ( is-modulus-limit-modulus-sequence-Pseudometric-Space ( M) ( u) ( y) ( my) ( right-summand-split-ℚ⁺ ε)))) where tr-modulus-indistinguishable : (d₁ d₂ : ℚ⁺) → Σ ( ℕ) ( λ N → (n : ℕ) → leq-ℕ N n → neighborhood-Pseudometric-Space M d₁ (u n) x) → Σ ( ℕ) ( λ N → (n : ℕ) → leq-ℕ N n → neighborhood-Pseudometric-Space M d₂ (u n) y) → neighborhood-Pseudometric-Space M (d₁ +ℚ⁺ d₂) x y tr-modulus-indistinguishable d₁ d₂ (Nx , Mx) (Ny , My) = ( is-triangular-structure-Pseudometric-Space M ( x) ( u (max-ℕ Nx Ny)) ( y) ( d₁) ( d₂) ( My (max-ℕ Nx Ny) (right-leq-max-ℕ Nx Ny)) ( is-symmetric-structure-Pseudometric-Space M d₁ ( u (max-ℕ Nx Ny)) ( x) ( Mx (max-ℕ Nx Ny) (left-leq-max-ℕ Nx Ny)))) indistinguishable-limit-sequence-Pseudometric-Space : is-limit-sequence-Pseudometric-Space M u x → is-limit-sequence-Pseudometric-Space M u y → is-indistinguishable-Pseudometric-Space M x y indistinguishable-limit-sequence-Pseudometric-Space Lx Ly = rec-trunc-Prop ( is-indistinguishable-prop-Pseudometric-Space M x y) ( λ My → rec-trunc-Prop ( Π-Prop ℚ⁺ (λ d → structure-Pseudometric-Space M d x y)) ( λ Mx → indistinguishable-limit-limit-modulus-sequence-Pseudometric-Space Mx My) ( Lx)) ( Ly)
Taking subsequences preserves limits in pseudometric spaces
module _ {l1 l2 : Level} (M : Pseudometric-Space l1 l2) (u : sequence-type-Pseudometric-Space M) (v : subsequence u) (lim : type-Pseudometric-Space M) where modulus-subsequence-limit-modulus-sequence-Premetric-Space : limit-modulus-sequence-Pseudometric-Space M u lim → limit-modulus-sequence-Pseudometric-Space ( M) ( seq-subsequence u v) ( lim) modulus-subsequence-limit-modulus-sequence-Premetric-Space = tot ( λ m is-modulus d n H → is-modulus ( d) ( extract-subsequence u v n) ( transitive-leq-ℕ ( m d) ( n) ( extract-subsequence u v n) ( is-superlinear-extract-subsequence u v n) ( H))) preserves-limit-subsequence-Pseudometric-Space : is-limit-sequence-Pseudometric-Space M u lim → is-limit-sequence-Pseudometric-Space M (seq-subsequence u v) lim preserves-limit-subsequence-Pseudometric-Space = map-is-inhabited modulus-subsequence-limit-modulus-sequence-Premetric-Space
Recent changes
- 2025-05-01. malarbol. Limits of sequences in metric spaces (#1378).