Triangular premetric structures on types
Content created by Fredrik Bakke and malarbol.
Created on 2024-09-28.
Last modified on 2024-09-28.
module metric-spaces.triangular-premetric-structures where
Imports
open import elementary-number-theory.positive-rational-numbers open import foundation.binary-relations open import foundation.function-types open import foundation.identity-types open import foundation.propositions open import foundation.transport-along-identifications open import foundation.universe-levels open import metric-spaces.monotonic-premetric-structures open import metric-spaces.premetric-structures open import metric-spaces.reflexive-premetric-structures
Idea
A premetric is
triangular¶
if it is additively transitive. I.e., if for any three elements x
, y
, and
z
, the sum of an upper bound on the distance between x
and y
and an upper
bound on the distance between y
and z
bounds the distance between x
and
z
.
Definitions
The property of being a triangular premetric structure
module _ {l1 l2 : Level} {A : UU l1} (B : Premetric l2 A) where is-triangular-prop-Premetric : Prop (l1 ⊔ l2) is-triangular-prop-Premetric = Π-Prop ( A) ( λ x → ( Π-Prop ( A) ( λ y → ( Π-Prop ( A) ( λ z → Π-Prop ( ℚ⁺) ( λ d₁ → ( Π-Prop ( ℚ⁺) ( λ d₂ → hom-Prop ( B d₂ y z) ( hom-Prop ( B d₁ x y) ( B (d₁ +ℚ⁺ d₂) x z)))))))))) is-triangular-Premetric : UU (l1 ⊔ l2) is-triangular-Premetric = type-Prop is-triangular-prop-Premetric is-prop-is-triangular-Premetric : is-prop is-triangular-Premetric is-prop-is-triangular-Premetric = is-prop-type-Prop is-triangular-prop-Premetric
Properties
Indistiguishability in a triangular premetric is transitive
module _ {l1 l2 : Level} {A : UU l1} (B : Premetric l2 A) (T : is-triangular-Premetric B) where is-transitive-is-indistinguishable-triangular-Premetric : is-transitive (is-indistinguishable-Premetric B) is-transitive-is-indistinguishable-triangular-Premetric x y z H K d = tr ( λ h → neighborhood-Premetric B h x z) ( eq-add-split-ℚ⁺ d) ( T ( x) ( y) ( z) ( left-summand-split-ℚ⁺ d) ( right-summand-split-ℚ⁺ d) ( H (right-summand-split-ℚ⁺ d)) ( K (left-summand-split-ℚ⁺ d)))
Any triangular reflexive premetric is monotonic
module _ {l1 l2 : Level} {A : UU l1} (B : Premetric l2 A) (R : is-reflexive-Premetric B) (T : is-triangular-Premetric B) where is-monotonic-is-reflexive-triangular-Premetric : is-monotonic-Premetric B is-monotonic-is-reflexive-triangular-Premetric x y d₁ d₂ I H₁ = tr ( λ d → neighborhood-Premetric B d x y) ( right-diff-law-add-ℚ⁺ d₁ d₂ I) ( T x y y d₁ (le-diff-ℚ⁺ d₁ d₂ I) (R (le-diff-ℚ⁺ d₁ d₂ I) y) H₁)
Recent changes
- 2024-09-28. malarbol and Fredrik Bakke. Metric spaces (#1162).