Premetric spaces
Content created by Fredrik Bakke and malarbol.
Created on 2024-09-28.
Last modified on 2024-09-28.
module metric-spaces.premetric-spaces where
Imports
open import elementary-number-theory.positive-rational-numbers open import foundation.dependent-pair-types open import foundation.function-types open import foundation.propositions open import foundation.universe-levels open import metric-spaces.discrete-premetric-structures open import metric-spaces.extensional-premetric-structures open import metric-spaces.monotonic-premetric-structures open import metric-spaces.premetric-structures open import metric-spaces.reflexive-premetric-structures open import metric-spaces.symmetric-premetric-structures open import metric-spaces.triangular-premetric-structures
Idea
A premetric space¶ is a type equipped with a premetric.
Definitions
The type of premetric spaces
Premetric-Space : (l1 l2 : Level) → UU (lsuc l1 ⊔ lsuc l2) Premetric-Space l1 l2 = Σ (UU l1) (Premetric l2) module _ {l1 l2 : Level} (M : Premetric-Space l1 l2) where type-Premetric-Space : UU l1 type-Premetric-Space = pr1 M structure-Premetric-Space : Premetric l2 type-Premetric-Space structure-Premetric-Space = pr2 M neighborhood-Premetric-Space : ℚ⁺ → type-Premetric-Space → type-Premetric-Space → UU l2 neighborhood-Premetric-Space = neighborhood-Premetric structure-Premetric-Space is-prop-neighborhood-Premetric-Space : (d : ℚ⁺) (x y : type-Premetric-Space) → is-prop (neighborhood-Premetric-Space d x y) is-prop-neighborhood-Premetric-Space = is-prop-neighborhood-Premetric structure-Premetric-Space is-upper-bound-dist-Premetric-Space : (x y : type-Premetric-Space) (d : ℚ⁺) → UU l2 is-upper-bound-dist-Premetric-Space = is-upper-bound-dist-Premetric structure-Premetric-Space is-prop-is-upper-bound-dist-Premetric-Space : (x y : type-Premetric-Space) (d : ℚ⁺) → is-prop (is-upper-bound-dist-Premetric-Space x y d) is-prop-is-upper-bound-dist-Premetric-Space = is-prop-is-upper-bound-dist-Premetric structure-Premetric-Space is-indistinguishable-prop-Premetric-Space : (x y : type-Premetric-Space) → Prop l2 is-indistinguishable-prop-Premetric-Space = is-indistinguishable-prop-Premetric structure-Premetric-Space is-indistinguishable-Premetric-Space : (x y : type-Premetric-Space) → UU l2 is-indistinguishable-Premetric-Space = is-indistinguishable-Premetric structure-Premetric-Space is-prop-is-indistinguishable-Premetric-Space : (x y : type-Premetric-Space) → is-prop (is-indistinguishable-Premetric-Space x y) is-prop-is-indistinguishable-Premetric-Space = is-prop-is-indistinguishable-Premetric structure-Premetric-Space
The type of functions between premetric spaces
module _ {l1 l2 l1' l2' : Level} (A : Premetric-Space l1 l2) (B : Premetric-Space l1' l2') where map-type-Premetric-Space : UU (l1 ⊔ l1') map-type-Premetric-Space = type-Premetric-Space A → type-Premetric-Space B
The identity map on a premetric space
module _ {l1 l2 : Level} (A : Premetric-Space l1 l2) where id-Premetric-Space : map-type-Premetric-Space A A id-Premetric-Space = id
Any type is a discrete premetric space
module _ {l : Level} (A : UU l) where discrete-Premetric-Space : Premetric-Space l l discrete-Premetric-Space = A , premetric-discrete-Premetric A
Recent changes
- 2024-09-28. malarbol and Fredrik Bakke. Metric spaces (#1162).