Premetric spaces

Content created by Fredrik Bakke and malarbol.

Created on 2024-09-28.
Last modified on 2024-09-28.

module metric-spaces.premetric-spaces where
Imports
open import elementary-number-theory.positive-rational-numbers

open import foundation.dependent-pair-types
open import foundation.function-types
open import foundation.propositions
open import foundation.universe-levels

open import metric-spaces.discrete-premetric-structures
open import metric-spaces.extensional-premetric-structures
open import metric-spaces.monotonic-premetric-structures
open import metric-spaces.premetric-structures
open import metric-spaces.reflexive-premetric-structures
open import metric-spaces.symmetric-premetric-structures
open import metric-spaces.triangular-premetric-structures

Idea

A premetric space is a type equipped with a premetric.

Definitions

The type of premetric spaces

Premetric-Space : (l1 l2 : Level)  UU (lsuc l1  lsuc l2)
Premetric-Space l1 l2 = Σ (UU l1) (Premetric l2)

module _
  {l1 l2 : Level} (M : Premetric-Space l1 l2)
  where

  type-Premetric-Space : UU l1
  type-Premetric-Space = pr1 M

  structure-Premetric-Space : Premetric l2 type-Premetric-Space
  structure-Premetric-Space = pr2 M

  neighborhood-Premetric-Space :
    ℚ⁺  type-Premetric-Space  type-Premetric-Space  UU l2
  neighborhood-Premetric-Space =
    neighborhood-Premetric structure-Premetric-Space

  is-prop-neighborhood-Premetric-Space :
    (d : ℚ⁺) (x y : type-Premetric-Space) 
    is-prop (neighborhood-Premetric-Space d x y)
  is-prop-neighborhood-Premetric-Space =
    is-prop-neighborhood-Premetric structure-Premetric-Space

  is-upper-bound-dist-Premetric-Space :
    (x y : type-Premetric-Space) (d : ℚ⁺)  UU l2
  is-upper-bound-dist-Premetric-Space =
    is-upper-bound-dist-Premetric structure-Premetric-Space

  is-prop-is-upper-bound-dist-Premetric-Space :
    (x y : type-Premetric-Space) (d : ℚ⁺) 
    is-prop (is-upper-bound-dist-Premetric-Space x y d)
  is-prop-is-upper-bound-dist-Premetric-Space =
    is-prop-is-upper-bound-dist-Premetric structure-Premetric-Space

  is-indistinguishable-prop-Premetric-Space :
    (x y : type-Premetric-Space)  Prop l2
  is-indistinguishable-prop-Premetric-Space =
    is-indistinguishable-prop-Premetric structure-Premetric-Space

  is-indistinguishable-Premetric-Space :
    (x y : type-Premetric-Space)  UU l2
  is-indistinguishable-Premetric-Space =
    is-indistinguishable-Premetric structure-Premetric-Space

  is-prop-is-indistinguishable-Premetric-Space :
    (x y : type-Premetric-Space) 
    is-prop (is-indistinguishable-Premetric-Space x y)
  is-prop-is-indistinguishable-Premetric-Space =
    is-prop-is-indistinguishable-Premetric structure-Premetric-Space

The type of functions between premetric spaces

module _
  {l1 l2 l1' l2' : Level}
  (A : Premetric-Space l1 l2) (B : Premetric-Space l1' l2')
  where

  map-type-Premetric-Space : UU (l1  l1')
  map-type-Premetric-Space =
    type-Premetric-Space A  type-Premetric-Space B

The identity map on a premetric space

module _
  {l1 l2 : Level} (A : Premetric-Space l1 l2)
  where

  id-Premetric-Space : map-type-Premetric-Space A A
  id-Premetric-Space = id

Any type is a discrete premetric space

module _
  {l : Level} (A : UU l)
  where

  discrete-Premetric-Space : Premetric-Space l l
  discrete-Premetric-Space = A , premetric-discrete-Premetric A

Recent changes