1000+ theorems
Content created by Fredrik Bakke.
Created on 2025-02-14.
Last modified on 2025-02-14.
On this page, we record formalized results in the agda-unimath library following Freek Wiedijk and collaborators’ 1000+ theorems project [Wie]. This project records the formalization status of theorems in mathematics that have their own Wikipedia entry. We welcome any contribution to this list!
module literature.1000plus-theorems where
Formalized theorems
The theorems are ordered alphabetically, omitting definite articles (“the”).
Bézout’s lemma
Author: Bryan Lu
open import elementary-number-theory.bezouts-lemma-integers using ( bezouts-lemma-ℤ) open import elementary-number-theory.bezouts-lemma-natural-numbers using ( bezouts-lemma-ℕ)
Binomial theorem
Author: Egbert Rijke
open import commutative-algebra.binomial-theorem-commutative-rings using ( binomial-theorem-Commutative-Ring) open import commutative-algebra.binomial-theorem-commutative-semirings using ( binomial-theorem-Commutative-Semiring) open import ring-theory.binomial-theorem-rings using ( binomial-theorem-Ring) open import ring-theory.binomial-theorem-semirings using ( binomial-theorem-Semiring) open import elementary-number-theory.binomial-theorem-integers using ( binomial-theorem-ℤ) open import elementary-number-theory.binomial-theorem-natural-numbers using ( binomial-theorem-ℕ)
Cantor–Schröder–Bernstein theorem
Author: Elif Uskuplu
Note: The formalization of the Cantor-Schröder-Bernstein theorem in agda-unimath is a generalization of the statement to all types, i.e., it is not restricted to sets. This generalization is originally due to Martin-Escardó, hence we refer to the generalization as the Cantor-Schröder-Bernstein-Escardó theorem.
open import foundation.cantor-schroder-bernstein-escardo using ( Cantor-Schröder-Bernstein-Escardó ; Cantor-Schröder-Bernstein)
Cantor’s theorem
Author: Egbert Rijke
open import foundation.cantors-theorem using ( theorem-Cantor)
Cayley’s theorem
Author: Egbert Rijke
open import group-theory.cayleys-theorem using ( Cayleys-theorem)
Diaconescu’s theorem
Author: Fredrik Bakke
open import foundation.diaconescus-theorem using ( theorem-Diaconescu)
Euclid’s theorem
Author: Egbert Rijke
open import elementary-number-theory.infinitude-of-primes using ( infinitude-of-primes-ℕ)
Fundamental theorem of arithmetic
Author: Victor Blanchi
open import elementary-number-theory.fundamental-theorem-of-arithmetic using ( fundamental-theorem-arithmetic-list-ℕ)
Fundamental theorem of equivalence relations
Author: Egbert Rijke
open import foundation.fundamental-theorem-of-equivalence-relations using ( equiv-equivalence-relation-partition)
Kleene’s fixed point theorem
Author: Fredrik Bakke
open import domain-theory.kleenes-fixed-point-theorem-posets using ( is-least-fixed-point-theorem-kleene-hom-Poset ; is-least-fixed-point-theorem-kleene-Poset) open import domain-theory.kleenes-fixed-point-theorem-omega-complete-posets using ( is-least-fixed-point-theorem-kleene-hom-ω-Complete-Poset ; is-least-fixed-point-theorem-kleene-ω-Complete-Poset)
Knaster–Tarski fixed point theorem
Author: Fredrik Bakke
open import order-theory.knaster-tarski-fixed-point-theorem using ( least-fixed-point-knaster-tarski-Inflattice ; greatest-fixed-point-knaster-tarski-Suplattice)
Lawvere’s fixed point theorem
Author: Egbert Rijke
open import foundation.lawveres-fixed-point-theorem using ( fixed-point-theorem-Lawvere)
Yoneda lemma
Author: Emily Riehl
open import category-theory.yoneda-lemma-categories using ( lemma-yoneda-Category) open import category-theory.yoneda-lemma-precategories using ( lemma-yoneda-Precategory)
See also
- The spiritual predecessor of 1000+ theorems is Formalizing 100 Theorems, also due to Freek Wiedijk [Wie].
References
- [Wiea]
- Freek Wiedijk. 1000+ theorems. URL: https://1000-plus.github.io/.
- [Wieb]
- Freek Wiedijk. Formalizing 100 theorems. URL: https://www.cs.ru.nl/~freek/100/.
External links
- List of theorems on Wikipedia
- 1000+ theorems
- 1000-plus on GitHub
Recent changes
- 2025-02-14. Fredrik Bakke. Adjustments 1000+ theorems (#1325).
- 2025-02-14. Fredrik Bakke. Page for 1000+ theorems (#1324).