Cauchy approximations in premetric spaces
Content created by Fredrik Bakke and malarbol.
Created on 2024-09-28.
Last modified on 2024-09-28.
module metric-spaces.cauchy-approximations-premetric-spaces where
Imports
open import elementary-number-theory.positive-rational-numbers open import foundation.dependent-pair-types open import foundation.equivalences open import foundation.function-extensionality open import foundation.function-types open import foundation.homotopies open import foundation.identity-types open import foundation.logical-equivalences open import foundation.propositions open import foundation.subtypes open import foundation.universe-levels open import metric-spaces.premetric-spaces open import metric-spaces.short-functions-premetric-spaces
Idea
A
Cauchy approximation¶
in a premetric space is a map f
from
ℚ⁺
to its carrier
type such that for all (ε δ : ℚ⁺)
, f ε
and f δ
are in a
(ε + δ
)-neighborhood, i.e. the
distance between f ε
and f δ
is bounded by ε + δ
.
Definitions
The property of being a Cauchy approximation in a premetric space
module _ {l1 l2 : Level} (A : Premetric-Space l1 l2) (f : ℚ⁺ → type-Premetric-Space A) where is-cauchy-approximation-prop-Premetric-Space : Prop l2 is-cauchy-approximation-prop-Premetric-Space = Π-Prop ( ℚ⁺) ( λ ε → Π-Prop ( ℚ⁺) ( λ δ → structure-Premetric-Space A (ε +ℚ⁺ δ) (f ε) (f δ))) is-cauchy-approximation-Premetric-Space : UU l2 is-cauchy-approximation-Premetric-Space = type-Prop is-cauchy-approximation-prop-Premetric-Space is-prop-is-cauchy-approximation-Premetric-Space : is-prop is-cauchy-approximation-Premetric-Space is-prop-is-cauchy-approximation-Premetric-Space = is-prop-type-Prop is-cauchy-approximation-prop-Premetric-Space
The type of Cauchy approximations in a premetric space
module _ {l1 l2 : Level} (A : Premetric-Space l1 l2) where cauchy-approximation-Premetric-Space : UU (l1 ⊔ l2) cauchy-approximation-Premetric-Space = type-subtype (is-cauchy-approximation-prop-Premetric-Space A) module _ {l1 l2 : Level} (A : Premetric-Space l1 l2) (f : cauchy-approximation-Premetric-Space A) where map-cauchy-approximation-Premetric-Space : ℚ⁺ → type-Premetric-Space A map-cauchy-approximation-Premetric-Space = pr1 f is-cauchy-map-cauchy-approximation-Premetric-Space : (ε δ : ℚ⁺) → neighborhood-Premetric-Space ( A) ( ε +ℚ⁺ δ) ( map-cauchy-approximation-Premetric-Space ε) ( map-cauchy-approximation-Premetric-Space δ) is-cauchy-map-cauchy-approximation-Premetric-Space = pr2 f
Properties
Short maps between premetric spaces preserve Cauchy approximations
module _ {l1 l2 l1' l2' : Level} (A : Premetric-Space l1 l2) (B : Premetric-Space l1' l2') (f : map-type-Premetric-Space A B) (is-short-f : is-short-function-Premetric-Space A B f) (u : ℚ⁺ → type-Premetric-Space A) where preserves-is-cauchy-approximation-is-short-function-Premetric-Space : is-cauchy-approximation-Premetric-Space A u → is-cauchy-approximation-Premetric-Space B (f ∘ u) preserves-is-cauchy-approximation-is-short-function-Premetric-Space H ε δ = is-short-f (ε +ℚ⁺ δ) (u ε) (u δ) (H ε δ)
Short maps between premetric spaces are functorial on Cauchy approximations
module _ {l1 l2 l1' l2' : Level} (A : Premetric-Space l1 l2) (B : Premetric-Space l1' l2') (f : short-function-Premetric-Space A B) where map-short-function-cauchy-approximation-Premetric-Space : cauchy-approximation-Premetric-Space A → cauchy-approximation-Premetric-Space B map-short-function-cauchy-approximation-Premetric-Space (u , H) = map-short-function-Premetric-Space A B f ∘ u , preserves-is-cauchy-approximation-is-short-function-Premetric-Space ( A) ( B) ( map-short-function-Premetric-Space A B f) ( is-short-map-short-function-Premetric-Space A B f) ( u) ( H) module _ {l1 l2 : Level} (A : Premetric-Space l1 l2) where eq-id-map-short-function-cauchy-approximation-Premetric-Space : map-short-function-cauchy-approximation-Premetric-Space ( A) ( A) ( short-id-Premetric-Space A) = id eq-id-map-short-function-cauchy-approximation-Premetric-Space = refl module _ {l1a l2a l1b l2b l1c l2c : Level} (A : Premetric-Space l1a l2a) (B : Premetric-Space l1b l2b) (C : Premetric-Space l1c l2c) (g : short-function-Premetric-Space B C) (f : short-function-Premetric-Space A B) where eq-comp-map-short-function-cauchy-approximation-Premetric-Space : ( map-short-function-cauchy-approximation-Premetric-Space B C g ∘ map-short-function-cauchy-approximation-Premetric-Space A B f) = ( map-short-function-cauchy-approximation-Premetric-Space A C (comp-short-function-Premetric-Space A B C g f)) eq-comp-map-short-function-cauchy-approximation-Premetric-Space = refl
References
Our defintion of Cauchy approximation follows Definition 4.5.5 of [Boo20] and Definition 11.2.10 of [UF13].
- [Boo20]
- Auke Bart Booij. Analysis in univalent type theory. PhD thesis, University of Birmingham, 2020. URL: https://etheses.bham.ac.uk/id/eprint/10411/7/Booij20PhD.pdf.
- [UF13]
- The Univalent Foundations Program. Homotopy Type Theory: Univalent Foundations of Mathematics. Institute for Advanced Study, 2013. URL: https://homotopytypetheory.org/book/, arXiv:1308.0729.
Recent changes
- 2024-09-28. malarbol and Fredrik Bakke. Metric spaces (#1162).