The metric structure on the rational numbers with open neighborhoods
Content created by Fredrik Bakke and malarbol.
Created on 2024-09-28.
Last modified on 2024-09-28.
{-# OPTIONS --lossy-unification #-} module metric-spaces.metric-space-of-rational-numbers-with-open-neighborhoods where
Imports
open import elementary-number-theory.addition-rational-numbers open import elementary-number-theory.difference-rational-numbers open import elementary-number-theory.inequality-rational-numbers open import elementary-number-theory.positive-rational-numbers open import elementary-number-theory.rational-numbers open import elementary-number-theory.strict-inequality-rational-numbers open import foundation.action-on-identifications-functions open import foundation.cartesian-product-types open import foundation.dependent-pair-types open import foundation.empty-types open import foundation.equivalences open import foundation.function-types open import foundation.identity-types open import foundation.propositions open import foundation.transport-along-identifications open import foundation.universe-levels open import metric-spaces.extensional-premetric-structures open import metric-spaces.metric-spaces open import metric-spaces.metric-structures open import metric-spaces.monotonic-premetric-structures open import metric-spaces.premetric-spaces open import metric-spaces.premetric-structures open import metric-spaces.pseudometric-structures open import metric-spaces.reflexive-premetric-structures open import metric-spaces.symmetric-premetric-structures open import metric-spaces.triangular-premetric-structures
Idea
Srict inequality
on the rational numbers induces
a premetric on ℚ
where x y : ℚ
are
in a d
-neighborhood when y < x + d
and x < y + d
, i.e. upper bounds on the
distance between x
and y
are strict upper bounds of both y - x
and
x - y
. This is a metric structure on ℚ
that defines the
standard metric space of rational numbers with open neighborhoods¶.
Definitions
The standard premetric on the rational numbers with open neighborhoods
premetric-le-ℚ : Premetric lzero ℚ premetric-le-ℚ d x y = product-Prop ( le-ℚ-Prop y (x +ℚ (rational-ℚ⁺ d))) ( le-ℚ-Prop x (y +ℚ (rational-ℚ⁺ d)))
Properties
The standard premetric on the rational numbers is a metric
is-reflexive-premetric-le-ℚ : is-reflexive-Premetric premetric-le-ℚ is-reflexive-premetric-le-ℚ d x = (le-right-add-rational-ℚ⁺ x d , le-right-add-rational-ℚ⁺ x d) is-symmetric-premetric-le-ℚ : is-symmetric-Premetric premetric-le-ℚ is-symmetric-premetric-le-ℚ d x y (H , K) = (K , H) is-tight-premetric-le-ℚ : is-tight-Premetric premetric-le-ℚ is-tight-premetric-le-ℚ x y H = antisymmetric-leq-ℚ ( x) ( y) ( map-inv-equiv (equiv-leq-le-add-positive-ℚ x y) (pr2 ∘ H)) ( map-inv-equiv (equiv-leq-le-add-positive-ℚ y x) (pr1 ∘ H)) is-local-premetric-le-ℚ : is-local-Premetric premetric-le-ℚ is-local-premetric-le-ℚ = is-local-is-tight-Premetric premetric-le-ℚ is-tight-premetric-le-ℚ is-triangular-premetric-le-ℚ : is-triangular-Premetric premetric-le-ℚ pr1 (is-triangular-premetric-le-ℚ x y z d₁ d₂ Hyz Hxy) = tr ( le-ℚ z) ( associative-add-ℚ x (rational-ℚ⁺ d₁) (rational-ℚ⁺ d₂)) ( transitive-le-ℚ ( z) ( y +ℚ ( rational-ℚ⁺ d₂)) ( x +ℚ (rational-ℚ⁺ d₁) +ℚ (rational-ℚ⁺ d₂)) ( preserves-le-left-add-ℚ ( rational-ℚ⁺ d₂) ( y) ( x +ℚ (rational-ℚ⁺ d₁)) ( pr1 Hxy)) ( pr1 Hyz)) pr2 (is-triangular-premetric-le-ℚ x y z d₁ d₂ Hyz Hxy) = tr ( le-ℚ x) ( ap (z +ℚ_) (commutative-add-ℚ (rational-ℚ⁺ d₂) (rational-ℚ⁺ d₁))) ( tr ( le-ℚ x) ( associative-add-ℚ z (rational-ℚ⁺ d₂) (rational-ℚ⁺ d₁)) ( transitive-le-ℚ ( x) ( y +ℚ (rational-ℚ⁺ d₁)) ( z +ℚ (rational-ℚ⁺ d₂) +ℚ (rational-ℚ⁺ d₁)) ( ( preserves-le-left-add-ℚ ( rational-ℚ⁺ d₁) ( y) ( z +ℚ (rational-ℚ⁺ d₂)) ( pr2 Hyz))) ( pr2 Hxy))) is-pseudometric-premetric-le-ℚ : is-pseudometric-Premetric premetric-le-ℚ is-pseudometric-premetric-le-ℚ = is-reflexive-premetric-le-ℚ , is-symmetric-premetric-le-ℚ , is-triangular-premetric-le-ℚ is-metric-premetric-le-ℚ : is-metric-Premetric premetric-le-ℚ pr1 is-metric-premetric-le-ℚ = is-pseudometric-premetric-le-ℚ pr2 is-metric-premetric-le-ℚ = is-local-premetric-le-ℚ
The standard metric space of rational numbers with open neighborhoods
premetric-space-le-ℚ : Premetric-Space lzero lzero premetric-space-le-ℚ = ℚ , premetric-le-ℚ metric-space-le-ℚ : Metric-Space lzero lzero pr1 metric-space-le-ℚ = premetric-space-le-ℚ pr2 metric-space-le-ℚ = is-metric-premetric-le-ℚ
See also
- The standard metric space of rational numbers
Recent changes
- 2024-09-28. malarbol and Fredrik Bakke. Metric spaces (#1162).