The poset of premetric structures on a type

Content created by Fredrik Bakke and malarbol.

Created on 2024-09-28.
Last modified on 2024-09-28.

module metric-spaces.ordering-premetric-structures where
Imports
open import elementary-number-theory.positive-rational-numbers

open import foundation.binary-relations
open import foundation.dependent-pair-types
open import foundation.function-types
open import foundation.identity-types
open import foundation.propositions
open import foundation.universe-levels

open import metric-spaces.premetric-structures

open import order-theory.posets
open import order-theory.preorders

Idea

A premetric structure U on a type A is finer than another premetric V if (U d)-neighborhoods are (V d)-neighborhoods for any positive rational d, i.e., if any upper bound on the distance between two points in U also bounds their distance in V. This is a partial order on the type of premetric structures on A.

Definitions

module _
  {l1 l2 : Level} {A : UU l1} (U V : Premetric l2 A)
  where

  leq-prop-Premetric : Prop (l1  l2)
  leq-prop-Premetric =
    Π-Prop
      ( ℚ⁺)
      ( λ d 
        Π-Prop
          ( A)
          ( λ x 
            Π-Prop
              ( A)
              ( λ y  hom-Prop (U d x y) (V d x y))))

  leq-Premetric : UU (l1  l2)
  leq-Premetric = type-Prop leq-prop-Premetric

  is-prop-leq-Premetric : is-prop leq-Premetric
  is-prop-leq-Premetric = is-prop-type-Prop leq-prop-Premetric

Properties

The ordering on premetric structures is reflexive

module _
  {l1 l2 : Level} {A : UU l1} (U : Premetric l2 A)
  where

  refl-leq-Premetric : leq-Premetric U U
  refl-leq-Premetric d x y H = H

  leq-eq-Premetric : (V : Premetric l2 A)  (U  V)  leq-Premetric U V
  leq-eq-Premetric .U refl = refl-leq-Premetric

The ordering on premetric structures is transitive

module _
  {l1 l2 : Level} {A : UU l1} (U V W : Premetric l2 A)
  where

  transitive-leq-Premetric :
    leq-Premetric V W  leq-Premetric U V  leq-Premetric U W
  transitive-leq-Premetric H K d x y = H d x y  K d x y

The ordering on premetric structures is antisymmetric

module _
  {l1 l2 : Level} {A : UU l1} (U V : Premetric l2 A)
  where

  antisymmetric-leq-Premetric :
    leq-Premetric U V  leq-Premetric V U  U  V
  antisymmetric-leq-Premetric I J =
    eq-Eq-Premetric
      ( U)
      ( V)
      ( λ d x y  (I d x y , J d x y))

The poset of premetric structures on a type

module _
  {l1 l2 : Level} (A : UU l1)
  where

  preorder-Premetric : Preorder (l1  lsuc l2) (l1  l2)
  pr1 preorder-Premetric = Premetric l2 A
  pr2 preorder-Premetric =
    leq-prop-Premetric , refl-leq-Premetric , transitive-leq-Premetric

  poset-Premetric : Poset (l1  lsuc l2) (l1  l2)
  poset-Premetric = preorder-Premetric , antisymmetric-leq-Premetric

Recent changes