The poset of premetric structures on a type
Content created by Fredrik Bakke and malarbol.
Created on 2024-09-28.
Last modified on 2024-09-28.
module metric-spaces.ordering-premetric-structures where
Imports
open import elementary-number-theory.positive-rational-numbers open import foundation.binary-relations open import foundation.dependent-pair-types open import foundation.function-types open import foundation.identity-types open import foundation.propositions open import foundation.universe-levels open import metric-spaces.premetric-structures open import order-theory.posets open import order-theory.preorders
Idea
A premetric structure U
on a type A
is finer¶
than another premetric V
if (U d)
-neighborhoods are (V d)
-neighborhoods
for any
positive rational d
,
i.e., if any upper bound on the distance between two points in U
also bounds
their distance in V
. This is a partial order on the
type of premetric structures on A
.
Definitions
module _ {l1 l2 : Level} {A : UU l1} (U V : Premetric l2 A) where leq-prop-Premetric : Prop (l1 ⊔ l2) leq-prop-Premetric = Π-Prop ( ℚ⁺) ( λ d → Π-Prop ( A) ( λ x → Π-Prop ( A) ( λ y → hom-Prop (U d x y) (V d x y)))) leq-Premetric : UU (l1 ⊔ l2) leq-Premetric = type-Prop leq-prop-Premetric is-prop-leq-Premetric : is-prop leq-Premetric is-prop-leq-Premetric = is-prop-type-Prop leq-prop-Premetric
Properties
The ordering on premetric structures is reflexive
module _ {l1 l2 : Level} {A : UU l1} (U : Premetric l2 A) where refl-leq-Premetric : leq-Premetric U U refl-leq-Premetric d x y H = H leq-eq-Premetric : (V : Premetric l2 A) → (U = V) → leq-Premetric U V leq-eq-Premetric .U refl = refl-leq-Premetric
The ordering on premetric structures is transitive
module _ {l1 l2 : Level} {A : UU l1} (U V W : Premetric l2 A) where transitive-leq-Premetric : leq-Premetric V W → leq-Premetric U V → leq-Premetric U W transitive-leq-Premetric H K d x y = H d x y ∘ K d x y
The ordering on premetric structures is antisymmetric
module _ {l1 l2 : Level} {A : UU l1} (U V : Premetric l2 A) where antisymmetric-leq-Premetric : leq-Premetric U V → leq-Premetric V U → U = V antisymmetric-leq-Premetric I J = eq-Eq-Premetric ( U) ( V) ( λ d x y → (I d x y , J d x y))
The poset of premetric structures on a type
module _ {l1 l2 : Level} (A : UU l1) where preorder-Premetric : Preorder (l1 ⊔ lsuc l2) (l1 ⊔ l2) pr1 preorder-Premetric = Premetric l2 A pr2 preorder-Premetric = leq-prop-Premetric , refl-leq-Premetric , transitive-leq-Premetric poset-Premetric : Poset (l1 ⊔ lsuc l2) (l1 ⊔ l2) poset-Premetric = preorder-Premetric , antisymmetric-leq-Premetric
Recent changes
- 2024-09-28. malarbol and Fredrik Bakke. Metric spaces (#1162).