Monotonic premetric structures on types
Content created by Fredrik Bakke and malarbol.
Created on 2024-09-28.
Last modified on 2024-09-28.
module metric-spaces.monotonic-premetric-structures where
Imports
open import elementary-number-theory.positive-rational-numbers open import foundation.propositions open import foundation.universe-levels open import metric-spaces.premetric-structures
Idea
A premetric is
monotonic¶
if any d₁
-neighborhoods are d₂
-neighborhoods for d₁ < d₂
, i.e., if the
subsets of upper bounds on the distance between any two points are upper stable.
Definitions
The property of being a monotonic premetric structure
module _ {l1 l2 : Level} {A : UU l1} (B : Premetric l2 A) where is-monotonic-prop-Premetric : Prop (l1 ⊔ l2) is-monotonic-prop-Premetric = Π-Prop ( A) ( λ x → ( Π-Prop ( A) ( λ y → ( Π-Prop ( ℚ⁺) ( λ d₁ → ( Π-Prop ( ℚ⁺) ( λ d₂ → ( Π-Prop ( le-ℚ⁺ d₁ d₂) ( λ H → hom-Prop (B d₁ x y) (B d₂ x y)))))))))) is-monotonic-Premetric : UU (l1 ⊔ l2) is-monotonic-Premetric = type-Prop is-monotonic-prop-Premetric is-prop-is-monotonic-Premetric : is-prop is-monotonic-Premetric is-prop-is-monotonic-Premetric = is-prop-type-Prop is-monotonic-prop-Premetric
Recent changes
- 2024-09-28. malarbol and Fredrik Bakke. Metric spaces (#1162).