Sort by insertion for vectors
Content created by Fredrik Bakke, Egbert Rijke and Victor Blanchi.
Created on 2023-05-03.
Last modified on 2024-02-06.
module lists.sort-by-insertion-vectors where
Imports
open import elementary-number-theory.natural-numbers open import finite-group-theory.permutations-standard-finite-types open import finite-group-theory.transpositions-standard-finite-types open import foundation.action-on-identifications-functions open import foundation.coproduct-types open import foundation.dependent-pair-types open import foundation.equivalences open import foundation.functoriality-coproduct-types open import foundation.identity-types open import foundation.transport-along-identifications open import foundation.unit-type open import foundation.universe-levels open import linear-algebra.vectors open import lists.permutation-vectors open import lists.sorted-vectors open import lists.sorting-algorithms-vectors open import order-theory.decidable-total-orders
Idea
Sort by insertion is a recursive sort on vectors. If a vector is empty or with only one element then it is sorted. Otherwise, we recursively sort the tail of the vector. Then we compare the head of the vector to the head of the sorted tail. If the head is less or equal than the head of the tail the vector is sorted. Otherwise we permute the two elements and we recursively sort the tail of the vector.
Definition
module _ {l1 l2 : Level} (X : Decidable-Total-Order l1 l2) where helper-insertion-sort-vec : {n : ℕ} (x y : type-Decidable-Total-Order X) (l : vec (type-Decidable-Total-Order X) n) → leq-or-strict-greater-Decidable-Poset X x y → vec (type-Decidable-Total-Order X) (succ-ℕ (succ-ℕ (n))) helper-insertion-sort-vec x y l (inl p) = x ∷ y ∷ l helper-insertion-sort-vec {0} x y empty-vec (inr p) = y ∷ x ∷ empty-vec helper-insertion-sort-vec {succ-ℕ n} x y (z ∷ l) (inr p) = y ∷ ( helper-insertion-sort-vec ( x) ( z) ( l) ( is-leq-or-strict-greater-Decidable-Total-Order X x z)) insertion-sort-vec : {n : ℕ} → vec (type-Decidable-Total-Order X) n → vec (type-Decidable-Total-Order X) n insertion-sort-vec {zero-ℕ} empty-vec = empty-vec insertion-sort-vec {1} l = l insertion-sort-vec {succ-ℕ (succ-ℕ n)} (x ∷ y ∷ l) = helper-insertion-sort-vec ( x) ( head-vec (insertion-sort-vec (y ∷ l))) ( tail-vec (insertion-sort-vec (y ∷ l))) ( is-leq-or-strict-greater-Decidable-Total-Order X _ _)
Properties
Sort by insertion is a permutation
helper-permutation-insertion-sort-vec : {n : ℕ} (x y : type-Decidable-Total-Order X) (l : vec (type-Decidable-Total-Order X) n) → leq-or-strict-greater-Decidable-Poset X x y → Permutation (succ-ℕ (succ-ℕ (n))) helper-permutation-insertion-sort-vec x y l (inl _) = id-equiv helper-permutation-insertion-sort-vec {0} x y empty-vec (inr _) = swap-two-last-elements-transposition-Fin 0 helper-permutation-insertion-sort-vec {succ-ℕ n} x y (z ∷ l) (inr _) = ( ( swap-two-last-elements-transposition-Fin (succ-ℕ n)) ∘e ( ( equiv-coproduct ( helper-permutation-insertion-sort-vec ( x) ( z) ( l) ( is-leq-or-strict-greater-Decidable-Total-Order X x z)) ( id-equiv)))) permutation-insertion-sort-vec : {n : ℕ} (v : vec (type-Decidable-Total-Order X) n) → Permutation n permutation-insertion-sort-vec {zero-ℕ} empty-vec = id-equiv permutation-insertion-sort-vec {1} l = id-equiv permutation-insertion-sort-vec {succ-ℕ (succ-ℕ n)} (x ∷ y ∷ l) = equiv-coproduct ( permutation-insertion-sort-vec (y ∷ l)) ( id-equiv) ∘e helper-permutation-insertion-sort-vec ( x) ( head-vec (insertion-sort-vec (y ∷ l))) ( tail-vec (insertion-sort-vec (y ∷ l))) ( is-leq-or-strict-greater-Decidable-Total-Order X _ _) helper-eq-permute-vec-permutation-insertion-sort-vec : {n : ℕ} (x y : type-Decidable-Total-Order X) (v : vec (type-Decidable-Total-Order X) n) (p : leq-or-strict-greater-Decidable-Poset X x y) → helper-insertion-sort-vec x y v p = permute-vec ( succ-ℕ (succ-ℕ n)) ( x ∷ y ∷ v) ( helper-permutation-insertion-sort-vec x y v p) helper-eq-permute-vec-permutation-insertion-sort-vec x y v (inl _) = inv (compute-permute-vec-id-equiv (succ-ℕ (succ-ℕ _)) (x ∷ y ∷ v)) helper-eq-permute-vec-permutation-insertion-sort-vec {0} ( x) ( y) ( empty-vec) ( inr _) = refl helper-eq-permute-vec-permutation-insertion-sort-vec {succ-ℕ n} ( x) ( y) ( z ∷ v) ( inr p) = eq-Eq-vec ( succ-ℕ (succ-ℕ (succ-ℕ n))) ( helper-insertion-sort-vec x y (z ∷ v) (inr p)) ( permute-vec ( succ-ℕ (succ-ℕ (succ-ℕ n))) ( x ∷ y ∷ z ∷ v) ( helper-permutation-insertion-sort-vec x y (z ∷ v) (inr p))) ( refl , Eq-eq-vec ( succ-ℕ (succ-ℕ n)) ( helper-insertion-sort-vec ( x) ( z) ( v) ( is-leq-or-strict-greater-Decidable-Total-Order X x z)) ( tail-vec ( permute-vec ( succ-ℕ (succ-ℕ (succ-ℕ n))) ( x ∷ y ∷ z ∷ v) ( helper-permutation-insertion-sort-vec x y (z ∷ v) (inr p)))) ( ( helper-eq-permute-vec-permutation-insertion-sort-vec ( x) ( z) ( v) ( is-leq-or-strict-greater-Decidable-Total-Order X x z)) ∙ ( ap ( tail-vec) ( ap-permute-vec ( equiv-coproduct ( helper-permutation-insertion-sort-vec ( x) ( z) ( v) ( is-leq-or-strict-greater-Decidable-Total-Order ( X) ( x) ( z))) ( id-equiv)) ( inv ( compute-swap-two-last-elements-transposition-Fin-permute-vec (succ-ℕ n) ( z ∷ v) ( x) ( y))) ∙ ( inv ( compute-composition-permute-vec (succ-ℕ (succ-ℕ (succ-ℕ n))) ( x ∷ y ∷ z ∷ v) ( swap-two-last-elements-transposition-Fin (succ-ℕ n)) ( equiv-coproduct ( helper-permutation-insertion-sort-vec ( x) ( z) ( v) ( is-leq-or-strict-greater-Decidable-Total-Order ( X) ( x) ( z))) ( id-equiv)))))))) eq-permute-vec-permutation-insertion-sort-vec : {n : ℕ} (v : vec (type-Decidable-Total-Order X) n) → insertion-sort-vec v = permute-vec n v (permutation-insertion-sort-vec v) eq-permute-vec-permutation-insertion-sort-vec {0} empty-vec = refl eq-permute-vec-permutation-insertion-sort-vec {1} (x ∷ empty-vec) = refl eq-permute-vec-permutation-insertion-sort-vec {succ-ℕ (succ-ℕ n)} ( x ∷ y ∷ v) = ( ( helper-eq-permute-vec-permutation-insertion-sort-vec ( x) ( head-vec (insertion-sort-vec (y ∷ v))) ( tail-vec (insertion-sort-vec (y ∷ v))) ( is-leq-or-strict-greater-Decidable-Total-Order X _ _)) ∙ ( ( ap-permute-vec ( helper-permutation-insertion-sort-vec ( x) ( head-vec (insertion-sort-vec (y ∷ v))) ( tail-vec (insertion-sort-vec (y ∷ v))) ( is-leq-or-strict-greater-Decidable-Total-Order X _ _)) ( ap ( λ l → x ∷ l) ( cons-head-tail-vec n (insertion-sort-vec (y ∷ v)) ∙ eq-permute-vec-permutation-insertion-sort-vec (y ∷ v)))) ∙ ( ( inv ( compute-composition-permute-vec (succ-ℕ (succ-ℕ n)) ( x ∷ y ∷ v) ( equiv-coproduct ( permutation-insertion-sort-vec (y ∷ v)) ( id-equiv)) ( helper-permutation-insertion-sort-vec ( x) ( head-vec (insertion-sort-vec (y ∷ v))) ( tail-vec (insertion-sort-vec (y ∷ v))) ( is-leq-or-strict-greater-Decidable-Total-Order X _ _)))))))
Sort by insertion is sorting vectors
helper-is-sorting-insertion-sort-vec : {n : ℕ} (x y : type-Decidable-Total-Order X) (v : vec (type-Decidable-Total-Order X) n) → (p : leq-or-strict-greater-Decidable-Poset X x y) → is-sorted-vec X (y ∷ v) → is-sorted-vec X (helper-insertion-sort-vec x y v p) helper-is-sorting-insertion-sort-vec {0} x y empty-vec (inl p) _ = p , raise-star helper-is-sorting-insertion-sort-vec {0} x y empty-vec (inr p) _ = pr2 p , raise-star helper-is-sorting-insertion-sort-vec {succ-ℕ n} x y l (inl p) s = p , s helper-is-sorting-insertion-sort-vec {succ-ℕ n} x y (z ∷ v) (inr p) s = is-sorted-vec-is-sorted-least-element-vec ( X) ( helper-insertion-sort-vec x y (z ∷ v) (inr p)) ( tr ( is-least-element-vec X y) ( inv ( helper-eq-permute-vec-permutation-insertion-sort-vec ( x) ( z) ( v) ( is-leq-or-strict-greater-Decidable-Total-Order X x z))) ( is-least-element-permute-vec ( X) ( y) ( x ∷ z ∷ v) ( helper-permutation-insertion-sort-vec ( x) ( z) ( v) ( is-leq-or-strict-greater-Decidable-Total-Order X x z)) ( pr2 p , pr1 ( is-sorted-least-element-vec-is-sorted-vec ( X) ( y ∷ z ∷ v) ( s)))) , ( is-sorted-least-element-vec-is-sorted-vec ( X) ( helper-insertion-sort-vec ( x) ( z) ( v) ( is-leq-or-strict-greater-Decidable-Total-Order X x z)) ( helper-is-sorting-insertion-sort-vec ( x) ( z) ( v) ( is-leq-or-strict-greater-Decidable-Total-Order X x z) ( is-sorted-tail-is-sorted-vec X (y ∷ z ∷ v) s)))) is-sorting-insertion-sort-vec : {n : ℕ} (v : vec (type-Decidable-Total-Order X) n) → is-sorted-vec X (insertion-sort-vec v) is-sorting-insertion-sort-vec {0} v = raise-star is-sorting-insertion-sort-vec {1} v = raise-star is-sorting-insertion-sort-vec {succ-ℕ (succ-ℕ n)} (x ∷ y ∷ v) = helper-is-sorting-insertion-sort-vec ( x) ( head-vec (insertion-sort-vec (y ∷ v))) ( tail-vec (insertion-sort-vec (y ∷ v))) ( is-leq-or-strict-greater-Decidable-Total-Order X _ _) ( tr ( λ l → is-sorted-vec X l) ( inv (cons-head-tail-vec n (insertion-sort-vec (y ∷ v)))) ( is-sorting-insertion-sort-vec (y ∷ v)))
Sort by insertion is a sort
is-sort-insertion-sort-vec : is-sort-vec X (insertion-sort-vec) pr1 (pr1 (is-sort-insertion-sort-vec n) v) = permutation-insertion-sort-vec v pr2 (pr1 (is-sort-insertion-sort-vec n) v) = eq-permute-vec-permutation-insertion-sort-vec v pr2 (is-sort-insertion-sort-vec n) = is-sorting-insertion-sort-vec
Recent changes
- 2024-02-06. Fredrik Bakke. Rename
(co)prod
to(co)product
(#1017). - 2023-09-11. Fredrik Bakke. Transport along and action on equivalences (#706).
- 2023-06-10. Egbert Rijke and Fredrik Bakke. Cleaning up synthetic homotopy theory (#649).
- 2023-05-28. Fredrik Bakke. Enforce even indentation and automate some conventions (#635).
- 2023-05-22. Victor Blanchi and Fredrik Bakke. Cycle prime decomposition is closed under cartesian product (#624).