Vectors on euclidean domains
Content created by Fredrik Bakke, Egbert Rijke and Fernando Chu.
Created on 2023-04-05.
Last modified on 2024-03-11.
module linear-algebra.vectors-on-euclidean-domains where
Imports
open import commutative-algebra.euclidean-domains open import elementary-number-theory.natural-numbers open import foundation.action-on-identifications-binary-functions open import foundation.dependent-pair-types open import foundation.function-extensionality open import foundation.identity-types open import foundation.unital-binary-operations open import foundation.universe-levels open import group-theory.abelian-groups open import group-theory.commutative-monoids open import group-theory.groups open import group-theory.monoids open import group-theory.semigroups open import linear-algebra.constant-vectors open import linear-algebra.functoriality-vectors open import linear-algebra.vectors
Idea
Given an euclidean domain R
, the type vec n R
of R
-vectors is an
R
-module.
Definitions
Listed vectors on euclidean domains
module _ {l : Level} (R : Euclidean-Domain l) where vec-Euclidean-Domain : ℕ → UU l vec-Euclidean-Domain = vec (type-Euclidean-Domain R) head-vec-Euclidean-Domain : {n : ℕ} → vec-Euclidean-Domain (succ-ℕ n) → type-Euclidean-Domain R head-vec-Euclidean-Domain v = head-vec v tail-vec-Euclidean-Domain : {n : ℕ} → vec-Euclidean-Domain (succ-ℕ n) → vec-Euclidean-Domain n tail-vec-Euclidean-Domain v = tail-vec v snoc-vec-Euclidean-Domain : {n : ℕ} → vec-Euclidean-Domain n → type-Euclidean-Domain R → vec-Euclidean-Domain (succ-ℕ n) snoc-vec-Euclidean-Domain v r = snoc-vec v r
Functional vectors on euclidean domains
module _ {l : Level} (R : Euclidean-Domain l) where functional-vec-Euclidean-Domain : ℕ → UU l functional-vec-Euclidean-Domain = functional-vec (type-Euclidean-Domain R) head-functional-vec-Euclidean-Domain : (n : ℕ) → functional-vec-Euclidean-Domain (succ-ℕ n) → type-Euclidean-Domain R head-functional-vec-Euclidean-Domain n v = head-functional-vec n v tail-functional-vec-Euclidean-Domain : (n : ℕ) → functional-vec-Euclidean-Domain (succ-ℕ n) → functional-vec-Euclidean-Domain n tail-functional-vec-Euclidean-Domain = tail-functional-vec cons-functional-vec-Euclidean-Domain : (n : ℕ) → type-Euclidean-Domain R → functional-vec-Euclidean-Domain n → functional-vec-Euclidean-Domain (succ-ℕ n) cons-functional-vec-Euclidean-Domain = cons-functional-vec snoc-functional-vec-Euclidean-Domain : (n : ℕ) → functional-vec-Euclidean-Domain n → type-Euclidean-Domain R → functional-vec-Euclidean-Domain (succ-ℕ n) snoc-functional-vec-Euclidean-Domain = snoc-functional-vec
Zero vector on a euclidean domain
The zero listed vector
module _ {l : Level} (R : Euclidean-Domain l) where zero-vec-Euclidean-Domain : {n : ℕ} → vec-Euclidean-Domain R n zero-vec-Euclidean-Domain = constant-vec (zero-Euclidean-Domain R)
The zero functional vector
module _ {l : Level} (R : Euclidean-Domain l) where zero-functional-vec-Euclidean-Domain : (n : ℕ) → functional-vec-Euclidean-Domain R n zero-functional-vec-Euclidean-Domain n i = zero-Euclidean-Domain R
Pointwise addition of vectors on a euclidean domain
Pointwise addition of listed vectors on a euclidean domain
module _ {l : Level} (R : Euclidean-Domain l) where add-vec-Euclidean-Domain : {n : ℕ} → vec-Euclidean-Domain R n → vec-Euclidean-Domain R n → vec-Euclidean-Domain R n add-vec-Euclidean-Domain = binary-map-vec (add-Euclidean-Domain R) associative-add-vec-Euclidean-Domain : {n : ℕ} (v1 v2 v3 : vec-Euclidean-Domain R n) → Id ( add-vec-Euclidean-Domain (add-vec-Euclidean-Domain v1 v2) v3) ( add-vec-Euclidean-Domain v1 (add-vec-Euclidean-Domain v2 v3)) associative-add-vec-Euclidean-Domain empty-vec empty-vec empty-vec = refl associative-add-vec-Euclidean-Domain (x ∷ v1) (y ∷ v2) (z ∷ v3) = ap-binary _∷_ ( associative-add-Euclidean-Domain R x y z) ( associative-add-vec-Euclidean-Domain v1 v2 v3) vec-Euclidean-Domain-Semigroup : ℕ → Semigroup l pr1 (vec-Euclidean-Domain-Semigroup n) = vec-Set (set-Euclidean-Domain R) n pr1 (pr2 (vec-Euclidean-Domain-Semigroup n)) = add-vec-Euclidean-Domain pr2 (pr2 (vec-Euclidean-Domain-Semigroup n)) = associative-add-vec-Euclidean-Domain left-unit-law-add-vec-Euclidean-Domain : {n : ℕ} (v : vec-Euclidean-Domain R n) → Id (add-vec-Euclidean-Domain (zero-vec-Euclidean-Domain R) v) v left-unit-law-add-vec-Euclidean-Domain empty-vec = refl left-unit-law-add-vec-Euclidean-Domain (x ∷ v) = ap-binary _∷_ ( left-unit-law-add-Euclidean-Domain R x) ( left-unit-law-add-vec-Euclidean-Domain v) right-unit-law-add-vec-Euclidean-Domain : {n : ℕ} (v : vec-Euclidean-Domain R n) → Id (add-vec-Euclidean-Domain v (zero-vec-Euclidean-Domain R)) v right-unit-law-add-vec-Euclidean-Domain empty-vec = refl right-unit-law-add-vec-Euclidean-Domain (x ∷ v) = ap-binary _∷_ ( right-unit-law-add-Euclidean-Domain R x) ( right-unit-law-add-vec-Euclidean-Domain v) vec-Euclidean-Domain-Monoid : ℕ → Monoid l pr1 (vec-Euclidean-Domain-Monoid n) = vec-Euclidean-Domain-Semigroup n pr1 (pr2 (vec-Euclidean-Domain-Monoid n)) = zero-vec-Euclidean-Domain R pr1 (pr2 (pr2 (vec-Euclidean-Domain-Monoid n))) = left-unit-law-add-vec-Euclidean-Domain pr2 (pr2 (pr2 (vec-Euclidean-Domain-Monoid n))) = right-unit-law-add-vec-Euclidean-Domain commutative-add-vec-Euclidean-Domain : {n : ℕ} (v w : vec-Euclidean-Domain R n) → Id (add-vec-Euclidean-Domain v w) (add-vec-Euclidean-Domain w v) commutative-add-vec-Euclidean-Domain empty-vec empty-vec = refl commutative-add-vec-Euclidean-Domain (x ∷ v) (y ∷ w) = ap-binary _∷_ ( commutative-add-Euclidean-Domain R x y) ( commutative-add-vec-Euclidean-Domain v w) vec-Euclidean-Domain-Commutative-Monoid : ℕ → Commutative-Monoid l pr1 (vec-Euclidean-Domain-Commutative-Monoid n) = vec-Euclidean-Domain-Monoid n pr2 (vec-Euclidean-Domain-Commutative-Monoid n) = commutative-add-vec-Euclidean-Domain
Pointwise addition of functional vectors on a euclidean domain
module _ {l : Level} (R : Euclidean-Domain l) where add-functional-vec-Euclidean-Domain : (n : ℕ) (v w : functional-vec-Euclidean-Domain R n) → functional-vec-Euclidean-Domain R n add-functional-vec-Euclidean-Domain n = binary-map-functional-vec n (add-Euclidean-Domain R) associative-add-functional-vec-Euclidean-Domain : (n : ℕ) (v1 v2 v3 : functional-vec-Euclidean-Domain R n) → ( add-functional-vec-Euclidean-Domain ( n) ( add-functional-vec-Euclidean-Domain n v1 v2) ( v3)) = ( add-functional-vec-Euclidean-Domain ( n) ( v1) ( add-functional-vec-Euclidean-Domain n v2 v3)) associative-add-functional-vec-Euclidean-Domain n v1 v2 v3 = eq-htpy (λ i → associative-add-Euclidean-Domain R (v1 i) (v2 i) (v3 i)) functional-vec-Euclidean-Domain-Semigroup : ℕ → Semigroup l pr1 (functional-vec-Euclidean-Domain-Semigroup n) = functional-vec-Set (set-Euclidean-Domain R) n pr1 (pr2 (functional-vec-Euclidean-Domain-Semigroup n)) = add-functional-vec-Euclidean-Domain n pr2 (pr2 (functional-vec-Euclidean-Domain-Semigroup n)) = associative-add-functional-vec-Euclidean-Domain n left-unit-law-add-functional-vec-Euclidean-Domain : (n : ℕ) (v : functional-vec-Euclidean-Domain R n) → ( add-functional-vec-Euclidean-Domain ( n) ( zero-functional-vec-Euclidean-Domain R n) ( v)) = ( v) left-unit-law-add-functional-vec-Euclidean-Domain n v = eq-htpy (λ i → left-unit-law-add-Euclidean-Domain R (v i)) right-unit-law-add-functional-vec-Euclidean-Domain : (n : ℕ) (v : functional-vec-Euclidean-Domain R n) → ( add-functional-vec-Euclidean-Domain ( n) ( v) ( zero-functional-vec-Euclidean-Domain R n)) = ( v) right-unit-law-add-functional-vec-Euclidean-Domain n v = eq-htpy (λ i → right-unit-law-add-Euclidean-Domain R (v i)) functional-vec-Euclidean-Domain-Monoid : ℕ → Monoid l pr1 (functional-vec-Euclidean-Domain-Monoid n) = functional-vec-Euclidean-Domain-Semigroup n pr1 (pr2 (functional-vec-Euclidean-Domain-Monoid n)) = zero-functional-vec-Euclidean-Domain R n pr1 (pr2 (pr2 (functional-vec-Euclidean-Domain-Monoid n))) = left-unit-law-add-functional-vec-Euclidean-Domain n pr2 (pr2 (pr2 (functional-vec-Euclidean-Domain-Monoid n))) = right-unit-law-add-functional-vec-Euclidean-Domain n commutative-add-functional-vec-Euclidean-Domain : (n : ℕ) (v w : functional-vec-Euclidean-Domain R n) → add-functional-vec-Euclidean-Domain n v w = add-functional-vec-Euclidean-Domain n w v commutative-add-functional-vec-Euclidean-Domain n v w = eq-htpy (λ i → commutative-add-Euclidean-Domain R (v i) (w i)) functional-vec-Euclidean-Domain-Commutative-Monoid : ℕ → Commutative-Monoid l pr1 (functional-vec-Euclidean-Domain-Commutative-Monoid n) = functional-vec-Euclidean-Domain-Monoid n pr2 (functional-vec-Euclidean-Domain-Commutative-Monoid n) = commutative-add-functional-vec-Euclidean-Domain n
The negative of a vector on a euclidean domain
module _ {l : Level} (R : Euclidean-Domain l) where neg-vec-Euclidean-Domain : {n : ℕ} → vec-Euclidean-Domain R n → vec-Euclidean-Domain R n neg-vec-Euclidean-Domain = map-vec (neg-Euclidean-Domain R) left-inverse-law-add-vec-Euclidean-Domain : {n : ℕ} (v : vec-Euclidean-Domain R n) → Id ( add-vec-Euclidean-Domain R (neg-vec-Euclidean-Domain v) v) ( zero-vec-Euclidean-Domain R) left-inverse-law-add-vec-Euclidean-Domain empty-vec = refl left-inverse-law-add-vec-Euclidean-Domain (x ∷ v) = ap-binary _∷_ ( left-inverse-law-add-Euclidean-Domain R x) ( left-inverse-law-add-vec-Euclidean-Domain v) right-inverse-law-add-vec-Euclidean-Domain : {n : ℕ} (v : vec-Euclidean-Domain R n) → Id ( add-vec-Euclidean-Domain R v (neg-vec-Euclidean-Domain v)) ( zero-vec-Euclidean-Domain R) right-inverse-law-add-vec-Euclidean-Domain empty-vec = refl right-inverse-law-add-vec-Euclidean-Domain (x ∷ v) = ap-binary _∷_ ( right-inverse-law-add-Euclidean-Domain R x) ( right-inverse-law-add-vec-Euclidean-Domain v) is-unital-vec-Euclidean-Domain : (n : ℕ) → is-unital (add-vec-Euclidean-Domain R {n}) pr1 (is-unital-vec-Euclidean-Domain n) = zero-vec-Euclidean-Domain R pr1 (pr2 (is-unital-vec-Euclidean-Domain n)) = left-unit-law-add-vec-Euclidean-Domain R pr2 (pr2 (is-unital-vec-Euclidean-Domain n)) = right-unit-law-add-vec-Euclidean-Domain R is-group-vec-Euclidean-Domain : (n : ℕ) → is-group-Semigroup (vec-Euclidean-Domain-Semigroup R n) pr1 (is-group-vec-Euclidean-Domain n) = is-unital-vec-Euclidean-Domain n pr1 (pr2 (is-group-vec-Euclidean-Domain n)) = neg-vec-Euclidean-Domain pr1 (pr2 (pr2 (is-group-vec-Euclidean-Domain n))) = left-inverse-law-add-vec-Euclidean-Domain pr2 (pr2 (pr2 (is-group-vec-Euclidean-Domain n))) = right-inverse-law-add-vec-Euclidean-Domain vec-Euclidean-Domain-Group : ℕ → Group l pr1 (vec-Euclidean-Domain-Group n) = vec-Euclidean-Domain-Semigroup R n pr2 (vec-Euclidean-Domain-Group n) = is-group-vec-Euclidean-Domain n vec-Euclidean-Domain-Ab : ℕ → Ab l pr1 (vec-Euclidean-Domain-Ab n) = vec-Euclidean-Domain-Group n pr2 (vec-Euclidean-Domain-Ab n) = commutative-add-vec-Euclidean-Domain R
Recent changes
- 2024-03-11. Fredrik Bakke. Refactor category theory to use strictly involutive identity types (#1052).
- 2023-06-10. Egbert Rijke and Fredrik Bakke. Cleaning up synthetic homotopy theory (#649).
- 2023-05-01. Fredrik Bakke. Refactor 2, the sequel to refactor (#581).
- 2023-04-08. Egbert Rijke. Refactoring elementary number theory files (#546).
- 2023-04-05. Fernando Chu. Euclidean domains (#547).