Limits of Cauchy approximations in premetric spaces

Content created by Fredrik Bakke and malarbol.

Created on 2024-09-28.
Last modified on 2024-09-28.

module metric-spaces.limits-of-cauchy-approximations-in-premetric-spaces where
Imports
open import elementary-number-theory.positive-rational-numbers

open import foundation.dependent-pair-types
open import foundation.equivalences
open import foundation.function-extensionality
open import foundation.function-types
open import foundation.homotopies
open import foundation.identity-types
open import foundation.logical-equivalences
open import foundation.propositions
open import foundation.subtypes
open import foundation.transport-along-identifications
open import foundation.universe-levels

open import metric-spaces.cauchy-approximations-premetric-spaces
open import metric-spaces.extensional-premetric-structures
open import metric-spaces.premetric-spaces
open import metric-spaces.short-functions-premetric-spaces
open import metric-spaces.symmetric-premetric-structures
open import metric-spaces.triangular-premetric-structures

Idea

In a premetric space A, an element l of the carrier type of A is a limit of a Cauchy approximation f in A if f ε is an (ε + δ)-neighbor of l for all positive rationals (ε δ : ℚ⁺). This holds if and only if any ε : ℚ⁺ is an upper bound on the distance between f δ and l for all positive rational numbers δ < ε.

Definitions

Limits of a Cauchy approximation in a premetric space

module _
  {l1 l2 : Level} (A : Premetric-Space l1 l2)
  (f : cauchy-approximation-Premetric-Space A)
  (l : type-Premetric-Space A)
  where

  is-limit-cauchy-approximation-prop-Premetric-Space : Prop l2
  is-limit-cauchy-approximation-prop-Premetric-Space =
    Π-Prop
      ( ℚ⁺)
      ( λ ε 
        Π-Prop
          ( ℚ⁺)
          ( λ δ 
            structure-Premetric-Space
              ( A)
              ( ε +ℚ⁺ δ)
              ( map-cauchy-approximation-Premetric-Space A f ε)
              ( l)))

  is-limit-cauchy-approximation-Premetric-Space : UU l2
  is-limit-cauchy-approximation-Premetric-Space =
    type-Prop is-limit-cauchy-approximation-prop-Premetric-Space

  is-prop-is-limit-cauchy-approximation-Premetric-Space :
    is-prop is-limit-cauchy-approximation-Premetric-Space
  is-prop-is-limit-cauchy-approximation-Premetric-Space =
    is-prop-type-Prop is-limit-cauchy-approximation-prop-Premetric-Space

  is-limit-prop-cauchy-approximation-Premetric-Space' : Prop l2
  is-limit-prop-cauchy-approximation-Premetric-Space' =
    Π-Prop
      ( ℚ⁺)
      ( λ ε 
        Π-Prop
          ( ℚ⁺)
          ( λ δ 
            hom-Prop
              ( le-prop-ℚ⁺ δ ε)
              ( structure-Premetric-Space
                ( A)
                ( ε)
                ( map-cauchy-approximation-Premetric-Space A f δ)
                ( l))))

  is-limit-cauchy-approximation-Premetric-Space' : UU l2
  is-limit-cauchy-approximation-Premetric-Space' =
    type-Prop is-limit-prop-cauchy-approximation-Premetric-Space'

  is-prop-is-limit-cauchy-approximation-Premetric-Space' :
    is-prop is-limit-cauchy-approximation-Premetric-Space'
  is-prop-is-limit-cauchy-approximation-Premetric-Space' =
    is-prop-type-Prop is-limit-prop-cauchy-approximation-Premetric-Space'

Properties

The two definitions of limits are equivalent

module _
  {l1 l2 : Level} (A : Premetric-Space l1 l2)
  (f : cauchy-approximation-Premetric-Space A)
  (l : type-Premetric-Space A)
  where

  is-limit'-is-limit-cauchy-approximation-Premetric-Space :
    is-limit-cauchy-approximation-Premetric-Space A f l 
    is-limit-cauchy-approximation-Premetric-Space' A f l
  is-limit'-is-limit-cauchy-approximation-Premetric-Space H ε δ I =
    tr
      ( is-upper-bound-dist-Premetric-Space
        ( A)
        ( map-cauchy-approximation-Premetric-Space A f δ)
        ( l))
      ( right-diff-law-add-ℚ⁺ δ ε I)
      ( H δ (le-diff-ℚ⁺ δ ε I))

  is-limit-is-limit'-cauchy-approximation-Premetric-Space :
    is-limit-cauchy-approximation-Premetric-Space' A f l 
    is-limit-cauchy-approximation-Premetric-Space A f l
  is-limit-is-limit'-cauchy-approximation-Premetric-Space H ε δ =
    H (ε +ℚ⁺ δ) ε (le-left-add-ℚ⁺ ε δ)

Limits of Cauchy approximations in symmetric triangular premetric spaces are indistinguishable

module _
  {l1 l2 : Level} (A : Premetric-Space l1 l2)
  (is-symmetric-A : is-symmetric-Premetric (structure-Premetric-Space A))
  (is-triangular-A : is-triangular-Premetric (structure-Premetric-Space A))
  (f : cauchy-approximation-Premetric-Space A)
  {x y : type-Premetric-Space A}
  where

  is-indistinguishable-is-limit-cauchy-approximation-triangular-symmetric-Premetric-Space' :
    is-limit-cauchy-approximation-Premetric-Space' A f x 
    is-limit-cauchy-approximation-Premetric-Space' A f y 
    is-indistinguishable-Premetric-Space A x y
  is-indistinguishable-is-limit-cauchy-approximation-triangular-symmetric-Premetric-Space'
    lim-x lim-y d =
    tr
      ( is-upper-bound-dist-Premetric-Space A x y)
      ( eq-add-split-ℚ⁺ d)
      ( is-triangular-A
        ( x)
        ( map-cauchy-approximation-Premetric-Space
          ( A)
          ( f)
          ( strict-min-ℚ⁺ (left-summand-split-ℚ⁺ d) (right-summand-split-ℚ⁺ d)))
        ( y)
        ( left-summand-split-ℚ⁺ d)
        ( right-summand-split-ℚ⁺ d)
        ( lim-y
          ( right-summand-split-ℚ⁺ d)
          ( strict-min-ℚ⁺
            ( left-summand-split-ℚ⁺ d)
            ( right-summand-split-ℚ⁺ d))
          ( le-right-min-ℚ⁺
            ( left-summand-split-ℚ⁺ d)
            ( right-summand-split-ℚ⁺ d)))
        ( is-symmetric-A
          ( left-summand-split-ℚ⁺ d)
          ( map-cauchy-approximation-Premetric-Space
            ( A)
            ( f)
            ( strict-min-ℚ⁺
              ( left-summand-split-ℚ⁺ d)
              ( right-summand-split-ℚ⁺ d)))
          ( x)
          ( lim-x
            ( left-summand-split-ℚ⁺ d)
            ( strict-min-ℚ⁺
              ( left-summand-split-ℚ⁺ d)
              ( right-summand-split-ℚ⁺ d))
            ( le-left-min-ℚ⁺
              ( left-summand-split-ℚ⁺ d)
              ( right-summand-split-ℚ⁺ d)))))

  is-indistinguishable-is-limit-cauchy-approximation-triangular-symmetric-Premetric-Space :
    is-limit-cauchy-approximation-Premetric-Space A f x 
    is-limit-cauchy-approximation-Premetric-Space A f y 
    is-indistinguishable-Premetric-Space A x y
  is-indistinguishable-is-limit-cauchy-approximation-triangular-symmetric-Premetric-Space
    lim-x lim-y =
    is-indistinguishable-is-limit-cauchy-approximation-triangular-symmetric-Premetric-Space'
      ( is-limit'-is-limit-cauchy-approximation-Premetric-Space A f x lim-x)
      ( is-limit'-is-limit-cauchy-approximation-Premetric-Space A f y lim-y)

Limits of Cauchy approximations in a symmetric triangular extensional premetric space are equal

module _
  {l1 l2 : Level} (A : Premetric-Space l1 l2)
  (S : is-symmetric-Premetric (structure-Premetric-Space A))
  (T : is-triangular-Premetric (structure-Premetric-Space A))
  (E : is-extensional-Premetric (structure-Premetric-Space A))
  (f : cauchy-approximation-Premetric-Space A)
  {x y : type-Premetric-Space A}
  where

  all-elements-equal-is-limit-cauchy-approximation-triangular-symmetric-extensional-Premetric-Space' :
    (is-limit-cauchy-approximation-Premetric-Space' A f x) 
    (is-limit-cauchy-approximation-Premetric-Space' A f y) 
    (x  y)
  all-elements-equal-is-limit-cauchy-approximation-triangular-symmetric-extensional-Premetric-Space'
    I J =
    eq-indistinguishable-is-extensional-Premetric
      ( structure-Premetric-Space A)
      ( E)
      ( is-indistinguishable-is-limit-cauchy-approximation-triangular-symmetric-Premetric-Space'
        ( A)
        ( S)
        ( T)
        ( f)
        ( I)
        ( J))

  all-elements-equal-is-limit-cauchy-approximation-triangular-symmetric-extensional-Premetric-Space :
    (is-limit-cauchy-approximation-Premetric-Space A f x) 
    (is-limit-cauchy-approximation-Premetric-Space A f y) 
    (x  y)
  all-elements-equal-is-limit-cauchy-approximation-triangular-symmetric-extensional-Premetric-Space
    I J =
    all-elements-equal-is-limit-cauchy-approximation-triangular-symmetric-extensional-Premetric-Space'
      ( is-limit'-is-limit-cauchy-approximation-Premetric-Space A f x I)
      ( is-limit'-is-limit-cauchy-approximation-Premetric-Space A f y J)

References

Our definition of limit of Cauchy approximation follows Definition 11.2.10 from [UF13].

[UF13]
The Univalent Foundations Program. Homotopy Type Theory: Univalent Foundations of Mathematics. Institute for Advanced Study, 2013. URL: https://homotopytypetheory.org/book/, arXiv:1308.0729.

Recent changes