Limits of Cauchy approximations in premetric spaces
Content created by Fredrik Bakke and malarbol.
Created on 2024-09-28.
Last modified on 2024-09-28.
module metric-spaces.limits-of-cauchy-approximations-in-premetric-spaces where
Imports
open import elementary-number-theory.positive-rational-numbers open import foundation.dependent-pair-types open import foundation.equivalences open import foundation.function-extensionality open import foundation.function-types open import foundation.homotopies open import foundation.identity-types open import foundation.logical-equivalences open import foundation.propositions open import foundation.subtypes open import foundation.transport-along-identifications open import foundation.universe-levels open import metric-spaces.cauchy-approximations-premetric-spaces open import metric-spaces.extensional-premetric-structures open import metric-spaces.premetric-spaces open import metric-spaces.short-functions-premetric-spaces open import metric-spaces.symmetric-premetric-structures open import metric-spaces.triangular-premetric-structures
Idea
In a premetric space A
, an element l
of
the carrier type of A
is a
limit¶
of a
Cauchy approximation
f
in A
if f ε
is an
(ε + δ)
-neighbor of l
for all
positive rationals
(ε δ : ℚ⁺)
. This holds if and only if any ε : ℚ⁺
is an upper bound on the
distance between f δ
and l
for all positive rational numbers δ < ε
.
Definitions
Limits of a Cauchy approximation in a premetric space
module _ {l1 l2 : Level} (A : Premetric-Space l1 l2) (f : cauchy-approximation-Premetric-Space A) (l : type-Premetric-Space A) where is-limit-cauchy-approximation-prop-Premetric-Space : Prop l2 is-limit-cauchy-approximation-prop-Premetric-Space = Π-Prop ( ℚ⁺) ( λ ε → Π-Prop ( ℚ⁺) ( λ δ → structure-Premetric-Space ( A) ( ε +ℚ⁺ δ) ( map-cauchy-approximation-Premetric-Space A f ε) ( l))) is-limit-cauchy-approximation-Premetric-Space : UU l2 is-limit-cauchy-approximation-Premetric-Space = type-Prop is-limit-cauchy-approximation-prop-Premetric-Space is-prop-is-limit-cauchy-approximation-Premetric-Space : is-prop is-limit-cauchy-approximation-Premetric-Space is-prop-is-limit-cauchy-approximation-Premetric-Space = is-prop-type-Prop is-limit-cauchy-approximation-prop-Premetric-Space is-limit-prop-cauchy-approximation-Premetric-Space' : Prop l2 is-limit-prop-cauchy-approximation-Premetric-Space' = Π-Prop ( ℚ⁺) ( λ ε → Π-Prop ( ℚ⁺) ( λ δ → hom-Prop ( le-prop-ℚ⁺ δ ε) ( structure-Premetric-Space ( A) ( ε) ( map-cauchy-approximation-Premetric-Space A f δ) ( l)))) is-limit-cauchy-approximation-Premetric-Space' : UU l2 is-limit-cauchy-approximation-Premetric-Space' = type-Prop is-limit-prop-cauchy-approximation-Premetric-Space' is-prop-is-limit-cauchy-approximation-Premetric-Space' : is-prop is-limit-cauchy-approximation-Premetric-Space' is-prop-is-limit-cauchy-approximation-Premetric-Space' = is-prop-type-Prop is-limit-prop-cauchy-approximation-Premetric-Space'
Properties
The two definitions of limits are equivalent
module _ {l1 l2 : Level} (A : Premetric-Space l1 l2) (f : cauchy-approximation-Premetric-Space A) (l : type-Premetric-Space A) where is-limit'-is-limit-cauchy-approximation-Premetric-Space : is-limit-cauchy-approximation-Premetric-Space A f l → is-limit-cauchy-approximation-Premetric-Space' A f l is-limit'-is-limit-cauchy-approximation-Premetric-Space H ε δ I = tr ( is-upper-bound-dist-Premetric-Space ( A) ( map-cauchy-approximation-Premetric-Space A f δ) ( l)) ( right-diff-law-add-ℚ⁺ δ ε I) ( H δ (le-diff-ℚ⁺ δ ε I)) is-limit-is-limit'-cauchy-approximation-Premetric-Space : is-limit-cauchy-approximation-Premetric-Space' A f l → is-limit-cauchy-approximation-Premetric-Space A f l is-limit-is-limit'-cauchy-approximation-Premetric-Space H ε δ = H (ε +ℚ⁺ δ) ε (le-left-add-ℚ⁺ ε δ)
Limits of Cauchy approximations in symmetric triangular premetric spaces are indistinguishable
module _ {l1 l2 : Level} (A : Premetric-Space l1 l2) (is-symmetric-A : is-symmetric-Premetric (structure-Premetric-Space A)) (is-triangular-A : is-triangular-Premetric (structure-Premetric-Space A)) (f : cauchy-approximation-Premetric-Space A) {x y : type-Premetric-Space A} where is-indistinguishable-is-limit-cauchy-approximation-triangular-symmetric-Premetric-Space' : is-limit-cauchy-approximation-Premetric-Space' A f x → is-limit-cauchy-approximation-Premetric-Space' A f y → is-indistinguishable-Premetric-Space A x y is-indistinguishable-is-limit-cauchy-approximation-triangular-symmetric-Premetric-Space' lim-x lim-y d = tr ( is-upper-bound-dist-Premetric-Space A x y) ( eq-add-split-ℚ⁺ d) ( is-triangular-A ( x) ( map-cauchy-approximation-Premetric-Space ( A) ( f) ( strict-min-ℚ⁺ (left-summand-split-ℚ⁺ d) (right-summand-split-ℚ⁺ d))) ( y) ( left-summand-split-ℚ⁺ d) ( right-summand-split-ℚ⁺ d) ( lim-y ( right-summand-split-ℚ⁺ d) ( strict-min-ℚ⁺ ( left-summand-split-ℚ⁺ d) ( right-summand-split-ℚ⁺ d)) ( le-right-min-ℚ⁺ ( left-summand-split-ℚ⁺ d) ( right-summand-split-ℚ⁺ d))) ( is-symmetric-A ( left-summand-split-ℚ⁺ d) ( map-cauchy-approximation-Premetric-Space ( A) ( f) ( strict-min-ℚ⁺ ( left-summand-split-ℚ⁺ d) ( right-summand-split-ℚ⁺ d))) ( x) ( lim-x ( left-summand-split-ℚ⁺ d) ( strict-min-ℚ⁺ ( left-summand-split-ℚ⁺ d) ( right-summand-split-ℚ⁺ d)) ( le-left-min-ℚ⁺ ( left-summand-split-ℚ⁺ d) ( right-summand-split-ℚ⁺ d))))) is-indistinguishable-is-limit-cauchy-approximation-triangular-symmetric-Premetric-Space : is-limit-cauchy-approximation-Premetric-Space A f x → is-limit-cauchy-approximation-Premetric-Space A f y → is-indistinguishable-Premetric-Space A x y is-indistinguishable-is-limit-cauchy-approximation-triangular-symmetric-Premetric-Space lim-x lim-y = is-indistinguishable-is-limit-cauchy-approximation-triangular-symmetric-Premetric-Space' ( is-limit'-is-limit-cauchy-approximation-Premetric-Space A f x lim-x) ( is-limit'-is-limit-cauchy-approximation-Premetric-Space A f y lim-y)
Limits of Cauchy approximations in a symmetric triangular extensional premetric space are equal
module _ {l1 l2 : Level} (A : Premetric-Space l1 l2) (S : is-symmetric-Premetric (structure-Premetric-Space A)) (T : is-triangular-Premetric (structure-Premetric-Space A)) (E : is-extensional-Premetric (structure-Premetric-Space A)) (f : cauchy-approximation-Premetric-Space A) {x y : type-Premetric-Space A} where all-elements-equal-is-limit-cauchy-approximation-triangular-symmetric-extensional-Premetric-Space' : (is-limit-cauchy-approximation-Premetric-Space' A f x) → (is-limit-cauchy-approximation-Premetric-Space' A f y) → (x = y) all-elements-equal-is-limit-cauchy-approximation-triangular-symmetric-extensional-Premetric-Space' I J = eq-indistinguishable-is-extensional-Premetric ( structure-Premetric-Space A) ( E) ( is-indistinguishable-is-limit-cauchy-approximation-triangular-symmetric-Premetric-Space' ( A) ( S) ( T) ( f) ( I) ( J)) all-elements-equal-is-limit-cauchy-approximation-triangular-symmetric-extensional-Premetric-Space : (is-limit-cauchy-approximation-Premetric-Space A f x) → (is-limit-cauchy-approximation-Premetric-Space A f y) → (x = y) all-elements-equal-is-limit-cauchy-approximation-triangular-symmetric-extensional-Premetric-Space I J = all-elements-equal-is-limit-cauchy-approximation-triangular-symmetric-extensional-Premetric-Space' ( is-limit'-is-limit-cauchy-approximation-Premetric-Space A f x I) ( is-limit'-is-limit-cauchy-approximation-Premetric-Space A f y J)
References
Our definition of limit of Cauchy approximation follows Definition 11.2.10 from [UF13].
- [UF13]
- The Univalent Foundations Program. Homotopy Type Theory: Univalent Foundations of Mathematics. Institute for Advanced Study, 2013. URL: https://homotopytypetheory.org/book/, arXiv:1308.0729.
Recent changes
- 2024-09-28. malarbol and Fredrik Bakke. Metric spaces (#1162).